[Subversion] / BytecodeAssembler / README.txt  

Diff of /BytecodeAssembler/README.txt

Parent Directory | Revision Log

version 2194, Sat Jun 17 06:19:20 2006 UTC version 2457, Sun Dec 30 20:10:36 2007 UTC
Line 9 
Line 9 
 bytecode instead of on these mechanical issues.  bytecode instead of on these mechanical issues.
   
 In addition to a low-level opcode-oriented API for directly generating specific  In addition to a low-level opcode-oriented API for directly generating specific
 bytecodes, this module also offers an extensible mini-AST framework for  Python bytecodes, this module also offers an extensible mini-AST framework for
 generating code from high-level specifications.  This framework does most of  generating code from high-level specifications.  This framework does most of
 the work needed to transform tree-like structures into linear bytecode  the work needed to transform tree-like structures into linear bytecode
 instructions, and includes the ability to do compile-time constant folding.  instructions, and includes the ability to do compile-time constant folding.
   
   Changes since version 0.2:
   
   * Added ``Suite``, ``TryExcept``, and ``TryFinally`` node types
   
   * Added a ``Getattr`` node type that does static or dynamic attribute access
     and constant folding
   
   * Fixed ``code.from_function()`` not copying the ``co_filename`` attribute when
     ``copy_lineno`` was specified.
   
   * The ``repr()`` of AST nodes doesn't include a trailing comma for 1-argument
     node types any more.
   
   * Added a ``Pass`` symbol that generates no code, a ``Compare()`` node type
     that does n-way comparisons, and ``And()`` and ``Or()`` node types for doing
     logical operations.
   
   * The ``COMPARE_OP()`` method now accepts operator strings like ``"<="``,
     ``"not in"``, ``"exception match"``, and so on, as well as numeric opcodes.
     See the standard library's ``opcode`` module for a complete list of the
     strings accepted (in the ``cmp_op`` tuple).  ``"<>"`` is also accepted as an
     alias for ``"!="``.
   
   * Added code to verify that forward jump offsets don't exceed a 64KB span, and
     support absolute backward jumps to locations >64KB.
   
   Changes since version 0.1:
   
   * Constant handling has been fixed so that it doesn't confuse equal values of
     differing types (e.g. ``1.0`` and ``True``), or equal unhashable objects
     (e.g. two empty lists).
   
   * Removed ``nil``, ``ast_curry()`` and ``folding_curry()``, replacing them with
     the ``nodetype()`` decorator and ``fold_args()``; please see the docs for
     more details.
   
   * Added stack tracking across jumps, globally verifying stack level prediction
     consistency and automatically rejecting attempts to generate dead code.  It
     should now be virtually impossible to accidentally generate bytecode that can
     crash the interpreter.  (If you find a way, let me know!)
   
 Changes since version 0.0.1:  Changes since version 0.0.1:
   
 * Added massive quantities of new documentation and examples  * Added massive quantities of new documentation and examples
Line 35 
Line 76 
 * Various bug fixes  * Various bug fixes
   
 There are a few features that aren't tested yet, and not all opcodes may be  There are a few features that aren't tested yet, and not all opcodes may be
 fully supported.  Notably, the following features are still NOT reliably  fully supported.  Also note the following limitations:
 supported yet:  
   
 * Wide jump addressing (for generated bytecode>64K in size)  * Jumps to as-yet-undefined labels cannot span a distance greater than 65,535
     bytes.
   
 * The ``dis()`` module in Python 2.3 has a bug that makes it show incorrect  * The ``dis()`` module in Python 2.3 has a bug that makes it show incorrect
   line numbers when the difference between two adjacent line numbers is    line numbers when the difference between two adjacent line numbers is
Line 190 
Line 231 
 method::  method::
   
     >>> c = Code()      >>> c = Code()
     >>> where = c.here()         # get a location at the start of the code  
   
     >>> c.LOAD_CONST(42)      >>> c.LOAD_CONST(42)
       >>> where = c.here()         # get a location near the start of the code
       >>> c.DUP_TOP()
       >>> c.POP_TOP()
     >>> c.JUMP_ABSOLUTE(where)   # now jump back to it      >>> c.JUMP_ABSOLUTE(where)   # now jump back to it
   
     >>> dis(c.code())      >>> dis(c.code())
       0     >>    0 LOAD_CONST               1 (42)        0           0 LOAD_CONST               1 (42)
                   3 JUMP_ABSOLUTE            0              >>    3 DUP_TOP
                     4 POP_TOP
                     5 JUMP_ABSOLUTE            3
   
 But if you are jumping *forward*, you will need to call the jump or setup  But if you are jumping *forward*, you will need to call the jump or setup
 method without any arguments.  The return value will be a "forward reference"  method without any arguments.  The return value will be a "forward reference"
Line 205 
Line 249 
 been reached::  been reached::
   
     >>> c = Code()      >>> c = Code()
     >>> forward = c.JUMP_ABSOLUTE() # create a jump and a forward reference      >>> c.LOAD_CONST(99)
       >>> forward = c.JUMP_IF_TRUE() # create a jump and a forward reference
   
     >>> c.LOAD_CONST(42)            # this is what we want to skip over      >>> c.LOAD_CONST(42)            # this is what we want to skip over
       >>> c.POP_TOP()
   
     >>> forward()   # calling the reference changes the jump to point here      >>> forward()   # calling the reference changes the jump to point here
     >>> c.LOAD_CONST(23)      >>> c.LOAD_CONST(23)
     >>> c.RETURN_VALUE()      >>> c.RETURN_VALUE()
   
     >>> dis(c.code())      >>> dis(c.code())
       0           0 JUMP_ABSOLUTE            6        0           0 LOAD_CONST               1 (99)
                   3 LOAD_CONST               1 (42)                    3 JUMP_IF_TRUE             4 (to 10)
             >>    6 LOAD_CONST               2 (23)                    6 LOAD_CONST               2 (42)
                   9 RETURN_VALUE                    9 POP_TOP
               >>   10 LOAD_CONST               3 (23)
                    13 RETURN_VALUE
   
     >>> eval(c.code())      >>> eval(c.code())
     23      23
Line 246 
Line 294 
     >>> c.LOAD_CONST(None)  # in real code, this'd be a Python code constant      >>> c.LOAD_CONST(None)  # in real code, this'd be a Python code constant
     >>> c.MAKE_CLOSURE(0,2) # no defaults, 2 free vars in the new function      >>> c.MAKE_CLOSURE(0,2) # no defaults, 2 free vars in the new function
   
   The ``COMPARE_OP`` method takes an argument which can be a valid comparison
   integer constant, or a string containing a Python operator, e.g.::
   
       >>> c = Code()
       >>> c.LOAD_CONST(1)
       >>> c.LOAD_CONST(2)
       >>> c.COMPARE_OP('not in')
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (2)
                     6 COMPARE_OP               7 (not in)
   
   The full list of valid operator strings can be found in the standard library's
   ``opcode`` module.  ``"<>"`` is also accepted as an alias for ``"!="``::
   
       >>> c.LOAD_CONST(3)
       >>> c.COMPARE_OP('<>')
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (2)
                     6 COMPARE_OP               7 (not in)
                     9 LOAD_CONST               3 (3)
                    12 COMPARE_OP               3 (!=)
   
   
 High-Level Code Generation  High-Level Code Generation
 ==========================  ==========================
Line 279 
Line 351 
                  21 LOAD_CONST               0 (None)                   21 LOAD_CONST               0 (None)
                  24 LOAD_CONST               8 (<code object <lambda> at ...>)                   24 LOAD_CONST               8 (<code object <lambda> at ...>)
   
   Note that although some values of different types may compare equal to each
   other, ``Code`` objects will not substitute a value of a different type than
   the one you requested::
   
       >>> c = Code()
       >>> c(1, True, 1.0, 1L)     # equal, but different types
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (True)
                     6 LOAD_CONST               3 (1.0)
                     9 LOAD_CONST               4 (1L)
   
 Simple Containers  Simple Containers
 -----------------  -----------------
Line 323 
Line 406 
 a constant, rather than generating code to recreate the tuple using a series of  a constant, rather than generating code to recreate the tuple using a series of
 ``LOAD_CONST`` operations followed by a ``BUILD_TUPLE``.  ``LOAD_CONST`` operations followed by a ``BUILD_TUPLE``.
   
   If the value wrapped in a ``Const`` is not hashable, it is compared by identity
   rather than value.  This prevents equal mutable values from being reused by
   accident, e.g. if you plan to mutate the "constant" values later::
   
       >>> c = Code()
       >>> c(Const([]), Const([]))     # equal, but not the same object!
       >>> dis(c.code())
         0           0 LOAD_CONST               1 ([])
                     3 LOAD_CONST               2 ([])
   
   Thus, although ``Const`` objects hash and compare based on equality for
   hashable types::
   
       >>> hash(Const(3)) == hash(3)
       True
       >>> Const(3)==Const(3)
       True
   
   They hash and compare based on object identity for non-hashable types::
   
       >>> c = Const([])
       >>> hash(c) == hash(id(c.value))
       True
       >>> c == Const(c.value)     # compares equal if same object
       True
       >>> c == Const([])          # but is not equal to a merely equal object
       False
   
   
   ``Suite`` and ``Pass``
   ----------------------
   
   On occasion, it's helpful to be able to group a sequence of opcodes,
   expressions, or statements together, to be passed as an argument to other node
   types.  The ``Suite`` node type accomplishes this::
   
       >>> from peak.util.assembler import Suite, Pass
   
       >>> c = Code()
       >>> c.return_(Suite([Const(42), Code.DUP_TOP, Code.POP_TOP]))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 DUP_TOP
                     4 POP_TOP
                     5 RETURN_VALUE
   
   And ``Pass`` is a shortcut for an empty ``Suite``, that generates nothing::
   
       >>> Suite([])
       Pass
   
       >>> c = Code()
       >>> c(Pass)
       >>> c.return_(None)
       >>> dis(c.code())
         0           0 LOAD_CONST               0 (None)
                     3 RETURN_VALUE
   
   
 Local and Global Names  Local and Global Names
 ----------------------  ----------------------
Line 371 
Line 512 
                   6 LOAD_DEREF               1 (z)                    6 LOAD_DEREF               1 (z)
   
   
   Obtaining Attributes
   --------------------
   
   The ``Getattr`` node type takes an expression and an attribute name.  The
   attribute name can be a constant string, in which case a ``LOAD_ATTR`` opcode
   is used, and constant folding is done if possible::
   
       >>> from peak.util.assembler import Getattr
   
       >>> c = Code()
       >>> c(Getattr(Local('x'), '__class__'))
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_ATTR                0 (__class__)
   
   
       >>> Getattr(Const(object), '__class__') # const expression, const result
       Const(<type 'type'>)
   
   Or the attribute name can be an expression, in which case a ``getattr()`` call
   is compiled instead::
   
       >>> c = Code()
       >>> c(Getattr(Local('x'), Local('y')))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (<built-in function getattr>)
                     3 LOAD_FAST                0 (x)
                     6 LOAD_FAST                1 (y)
                     9 CALL_FUNCTION            2
   
   
 Calling Functions and Methods  Calling Functions and Methods
 -----------------------------  -----------------------------
   
Line 439 
Line 611 
   
     >>> c = Code()      >>> c = Code()
     >>> c.return_()      >>> c.return_()
       >>> dis(c.code())
         0           0 LOAD_CONST               0 (None)
                     3 RETURN_VALUE
   
       >>> c = Code()
     >>> c( Return() )      >>> c( Return() )
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_CONST               0 (None)        0           0 LOAD_CONST               0 (None)
                   3 RETURN_VALUE                    3 RETURN_VALUE
                   4 LOAD_CONST               0 (None)  
                   7 RETURN_VALUE  
   
   
 Labels and Jump Targets  Labels and Jump Targets
Line 455 
Line 630 
 current location.  For example::  current location.  For example::
   
     >>> c = Code()      >>> c = Code()
     >>> forward = c.JUMP_FORWARD()      >>> c.LOAD_CONST(99)
     >>> c( 1, 2, forward, Return(3) )      >>> forward = c.JUMP_IF_FALSE()
       >>> c( 1, Code.POP_TOP, forward, Return(3) )
     >>> dis(c.code())      >>> dis(c.code())
       0           0 JUMP_FORWARD             6 (to 9)        0           0 LOAD_CONST               1 (99)
                   3 LOAD_CONST               1 (1)                    3 JUMP_IF_FALSE            4 (to 10)
                   6 LOAD_CONST               2 (2)                    6 LOAD_CONST               2 (1)
              >>   9 LOAD_CONST               3 (3)                    9 POP_TOP
                  12 RETURN_VALUE              >>   10 LOAD_CONST               3 (3)
                    13 RETURN_VALUE
   
 However, there's an easier way to do the same thing, using ``Label`` objects::  However, there's an easier way to do the same thing, using ``Label`` objects::
   
Line 470 
Line 647 
     >>> c = Code()      >>> c = Code()
     >>> skip = Label()      >>> skip = Label()
   
     >>> c(skip.JUMP_FORWARD, 1, 2, skip, Return(3))      >>> c(99, skip.JUMP_IF_FALSE, 1, Code.POP_TOP, skip, Return(3))
     >>> dis(c.code())      >>> dis(c.code())
       0           0 JUMP_FORWARD             6 (to 9)        0           0 LOAD_CONST               1 (99)
                   3 LOAD_CONST               1 (1)                    3 JUMP_IF_FALSE            4 (to 10)
                   6 LOAD_CONST               2 (2)                    6 LOAD_CONST               2 (1)
              >>   9 LOAD_CONST               3 (3)                    9 POP_TOP
                  12 RETURN_VALUE              >>   10 LOAD_CONST               3 (3)
                    13 RETURN_VALUE
   
 This approach has the advantage of being easy to use in complex trees.  This approach has the advantage of being easy to use in complex trees.
 ``Label`` objects have attributes corresponding to every opcode that uses a  ``Label`` objects have attributes corresponding to every opcode that uses a
Line 492 
Line 670 
     AssertionError: Label previously defined      AssertionError: Label previously defined
   
   
   N-Way Comparisons
   -----------------
   
   You can generate N-way comparisons using the ``Compare()`` node type::
   
       >>> from peak.util.assembler import Compare
   
       >>> c = Code()
       >>> c(Compare(Local('a'), [('<', Local('b'))]))
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (a)
                     3 LOAD_FAST                1 (b)
                     6 COMPARE_OP               0 (<)
   
   3-way comparisons generate code that's a bit more complex.  Here's a three-way
   comparison (``a<b<c``)::
   
       >>> c = Code()
       >>> c.return_(Compare(Local('a'), [('<', Local('b')), ('<', Local('c'))]))
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (a)
                     3 LOAD_FAST                1 (b)
                     6 DUP_TOP
                     7 ROT_THREE
                     8 COMPARE_OP               0 (<)
                    11 JUMP_IF_FALSE           10 (to 24)
                    14 POP_TOP
                    15 LOAD_FAST                2 (c)
                    18 COMPARE_OP               0 (<)
                    21 JUMP_FORWARD             2 (to 26)
               >>   24 ROT_TWO
                    25 POP_TOP
               >>   26 RETURN_VALUE
   
   And a four-way (``a<b>c!=d``)::
   
       >>> c = Code()
       >>> c.return_(
       ...     Compare( Local('a'), [
       ...         ('<', Local('b')), ('>', Local('c')), ('!=', Local('d'))
       ...     ])
       ... )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (a)
                     3 LOAD_FAST                1 (b)
                     6 DUP_TOP
                     7 ROT_THREE
                     8 COMPARE_OP               0 (<)
                    11 JUMP_IF_FALSE           22 (to 36)
                    14 POP_TOP
                    15 LOAD_FAST                2 (c)
                    18 DUP_TOP
                    19 ROT_THREE
                    20 COMPARE_OP               4 (>)
                    23 JUMP_IF_FALSE           10 (to 36)
                    26 POP_TOP
                    27 LOAD_FAST                3 (d)
                    30 COMPARE_OP               3 (!=)
                    33 JUMP_FORWARD             2 (to 38)
               >>   36 ROT_TWO
                    37 POP_TOP
               >>   38 RETURN_VALUE
   
   
 Constant Detection and Folding  Constant Detection and Folding
 ==============================  ==============================
   
Line 517 
Line 759 
     >>> const_value(Local('x'))      >>> const_value(Local('x'))
     Traceback (most recent call last):      Traceback (most recent call last):
       ...        ...
     NotAConstant: <bound method str.Local of 'x'>      NotAConstant: Local('x')
   
 Tuples of constants are recursively replaced by constant tuples::  Tuples of constants are recursively replaced by constant tuples::
   
Line 532 
Line 774 
     >>> const_value( (1,Global('y')) )      >>> const_value( (1,Global('y')) )
     Traceback (most recent call last):      Traceback (most recent call last):
       ...        ...
     NotAConstant: <bound method str.Global of 'y'>      NotAConstant: Global('y')
   
 As do any types not previously described here::  As do any types not previously described here::
   
Line 547 
Line 789 
     [1, 2]      [1, 2]
   
   
   Folding Function Calls
   ----------------------
   
 The ``Call`` wrapper can also do simple constant folding, if all of its input  The ``Call`` wrapper can also do simple constant folding, if all of its input
 parameters are constants.  (Actually, the `args` and `kwargs` arguments must be  parameters are constants.  (Actually, the `args` and `kwargs` arguments must be
 *sequences* of constants and 2-tuples of constants, respectively.)  *sequences* of constants and 2-tuples of constants, respectively.)
Line 555 
Line 800 
 ``Const`` node instead of a ``Call`` node::  ``Const`` node instead of a ``Call`` node::
   
     >>> Call( Const(type), [1] )      >>> Call( Const(type), [1] )
     <bound method type.Const of <type 'int'>>      Const(<type 'int'>)
   
 Thus, you can also take the ``const_value()`` of such calls::  Thus, you can also take the ``const_value()`` of such calls::
   
Line 566 
Line 811 
 passed in to another ``Call``::  passed in to another ``Call``::
   
     >>> Call(Const(type), [Call( Const(dict), [], [('x',27)] )])      >>> Call(Const(type), [Call( Const(dict), [], [('x',27)] )])
     <bound method type.Const of <type 'dict'>>      Const(<type 'dict'>)
   
 Notice that this folding takes place eagerly, during AST construction.  If you  Notice that this folding takes place eagerly, during AST construction.  If you
 want to implement delayed folding after constant propagation or variable  want to implement delayed folding after constant propagation or variable
Line 604 
Line 849 
 ``globals()``, in other words.  ``globals()``, in other words.
   
   
   Logical And/Or
   --------------
   
   You can evaluate logical and/or expressions using the ``And`` and ``Or`` node
   types::
   
       >>> from peak.util.assembler import And, Or
   
       >>> c = Code()
       >>> c.return_( And([Local('x'), Local('y')]) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 JUMP_IF_FALSE            4 (to 10)
                     6 POP_TOP
                     7 LOAD_FAST                1 (y)
               >>   10 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( Or([Local('x'), Local('y')]) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 JUMP_IF_TRUE             4 (to 10)
                     6 POP_TOP
                     7 LOAD_FAST                1 (y)
               >>   10 RETURN_VALUE
   
   
   True or false constants are folded automatically, avoiding code generation
   for intermediate values that will never be used in the result::
   
       >>> c = Code()
       >>> c.return_( And([1, 2, Local('y')]) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (y)
                     3 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( And([1, 2, Local('y'), 0]) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (y)
                     3 JUMP_IF_FALSE            4 (to 10)
                     6 POP_TOP
                     7 LOAD_CONST               1 (0)
               >>   10 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( Or([1, 2, Local('y')]) )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( Or([False, Local('y'), 3]) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (y)
                     3 JUMP_IF_TRUE             4 (to 10)
                     6 POP_TOP
                     7 LOAD_CONST               1 (3)
               >>   10 RETURN_VALUE
   
   
 Custom Code Generation  Custom Code Generation
 ======================  ======================
   
Line 625 
Line 931 
 As you can see, the ``Code.DUP_TOP()`` is called on the code instance, causing  As you can see, the ``Code.DUP_TOP()`` is called on the code instance, causing
 a ``DUP_TOP`` opcode to be output.  This is sometimes a handy trick for  a ``DUP_TOP`` opcode to be output.  This is sometimes a handy trick for
 accessing values that are already on the stack.  More commonly, however, you'll  accessing values that are already on the stack.  More commonly, however, you'll
 want to implement more sophisticated callables, perhaps something like::  want to implement more sophisticated callables.
   
   To make it easy to create diverse target types, a ``nodetype()`` decorator is
   provided::
   
     >>> from peak.util.assembler import ast_curry      >>> from peak.util.assembler import nodetype
   
   It allows you to create code generation target types using functions.  Your
   function should take one or more arguments, with a ``code=None`` optional
   argument in the last position.  It should check whether ``code is None`` when
   called, and if so, return a tuple of the preceding arguments.  If ``code``
   is not ``None``, then it should do whatever code generating tasks are required.
   For example::
   
     >>> def TryFinally(block1, block2, code=None):      >>> def TryFinally(block1, block2, code=None):
     ...     if code is None:      ...     if code is None:
     ...         return ast_curry(TryFinally, block1, block2)      ...         return block1, block2
     ...     code(      ...     code(
     ...         Code.SETUP_FINALLY,      ...         Code.SETUP_FINALLY,
     ...             block1,      ...             block1,
Line 639 
Line 955 
     ...             block2,      ...             block2,
     ...         Code.END_FINALLY      ...         Code.END_FINALLY
     ...     )      ...     )
       >>> TryFinally = nodetype()(TryFinally)
   
   Note: although the nodetype() generator can be used above the function
   definition in either Python 2.3 or 2.4, it cannot be done in a doctest under
   Python 2.3, so this document doesn't attempt to demonstrate that.  Under
   2.4, you would do something like this::
   
       @nodetype()
       def TryFinally(...):
   
   and code that needs to also work under 2.3 should do something like this::
   
       nodetype()
       def TryFinally(...):
   
   But to keep the examples here working with doctest, we'll be doing our
   ``nodetype()`` calls after the end of the function definitions, e.g.::
   
     >>> def ExprStmt(value, code=None):      >>> def ExprStmt(value, code=None):
     ...     if code is None:      ...     if code is None:
     ...         return ast_curry(ExprStmt, value)      ...         return value,
     ...     code( value, Code.POP_TOP )      ...     code( value, Code.POP_TOP )
       >>> ExprStmt = nodetype()(ExprStmt)
   
     >>> c = Code()      >>> c = Code()
     >>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )      >>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
Line 657 
Line 991 
                  14 POP_TOP                   14 POP_TOP
                  15 END_FINALLY                   15 END_FINALLY
   
 The ``ast_curry()`` utility function returns an ``instancemethod`` chain that  The ``nodetype()`` decorator is virtually identical to the ``struct()``
 binds the given arguments to the given function, creating a hashable and  decorator in the DecoratorTools package, except that it does not support
 comparable data structure -- a trivial sort of "AST node".  Just follow the  ``*args``, does not create a field for the ``code`` argument, and generates a
 code pattern above, using a ``code=None`` final argument, and returning a  ``__call__()`` method that reinvokes the wrapped function to do the actual
 curried version of the function if ``code is None``.  Otherwise, your function  code generation.
 should simply do whatever is needed to "generate" the arguments.  
   Among the benefits of this decorator are:
 (This is exactly the same pattern that ``peak.util.assembler`` uses internally  
 to implement ``Const``, ``Call``, ``Local``, and other wrapper functions.)  * It gives your node types a great debugging format::
   
 The ``ast_curry()`` utility function isn't quite perfect; due to a quirk of the      >>> tf = TryFinally(ExprStmt(1), ExprStmt(2))
 ``instancemethod`` type, it can't save arguments whose value is ``None``: if      >>> tf
 you pass a ``None`` argument to ``ast_curry()``, it will be replaced with a      TryFinally(ExprStmt(1), ExprStmt(2))
 special ``nil`` object that tests as false, and generates a ``None`` constant  
 when code is generated for it.  If your function accepts any arguments that  * It makes named fields accessible::
 might have a value of ``None``, you must correctly handle the cases where you  
 receive a value of ``nil`` (found in ``peak.util.assembler``) instead of      >>> tf.block1
 ``None``.      ExprStmt(1)
   
 However, if you can use ``ast_curry()`` to generate your AST nodes, you will      >>> tf.block2
 have objects that are hashable and comparable by default, as long as none of      ExprStmt(2)
 your child nodes are unhashable or incomparable.  This can be useful for  
 algorithms that require comparing AST subtrees, such as common subexpression  * Hashing and comparison work as expected (handy for algorithms that require
 elimination.    comparing or caching AST subtrees, such as common subexpression
     elimination)::
   
       >>> ExprStmt(1) == ExprStmt(1)
       True
       >>> ExprStmt(1) == ExprStmt(2)
       False
   
   
   Please see the `struct decorator documentation`_ for info on how to customize
   node types further.
   
   .. _struct decorator documentation: http://peak.telecommunity.com/DevCenter/DecoratorTools#the-struct-decorator
   
   Note: hashing only works if all the values you return in your argument tuple
   are hashable, so you should try to convert them if possible.  For example, if
   an argument accepts any sequence, you should probably convert it to a tuple
   before returning it.  Most of the examples in this document, and the node types
   supplied by ``peak.util.assembler`` itself do this.
   
   
   Constant Folding in Custom Targets
   ----------------------------------
   
 If you want to incorporate constant-folding into your AST nodes, you can do  If you want to incorporate constant-folding into your AST nodes, you can do
 so by checking for constant values and folding them at either construction  so by checking for constant values and folding them at either construction
 or code generation time.  For example, this ``And`` node type folds constants  or code generation time.  For example, this ``And`` node type (a simpler
 during code generation, by not generating unnecessary branches when it can  version of the one included in ``peak.util.assembler``) folds constants during
   code generation, by not generating unnecessary branches when it can
 prove which way a branch will go::  prove which way a branch will go::
   
     >>> from peak.util.assembler import NotAConstant      >>> from peak.util.assembler import NotAConstant
   
     >>> def And(values, code=None):      >>> def And(values, code=None):
     ...     if code is None:      ...     if code is None:
     ...         return ast_curry(And, tuple(values))      ...         return tuple(values),
     ...     end = Label()      ...     end = Label()
     ...     for value in values[:-1]:      ...     for value in values[:-1]:
     ...         try:      ...         try:
     ...             if const_value(value):      ...             if const_value(value):
     ...                 continue    # true constants can be skipped      ...                 continue    # true constants can be skipped
     ...             else:           # and false ones end the chain right away  
     ...                 return code(value, end)  
     ...         except NotAConstant:    # but non-constants require code      ...         except NotAConstant:    # but non-constants require code
     ...             code(value, end.JUMP_IF_FALSE, Code.POP_TOP)      ...             code(value, end.JUMP_IF_FALSE, Code.POP_TOP)
       ...         else:       # and false constants end the chain right away
       ...             return code(value, end)
     ...     code(values[-1], end)      ...     code(values[-1], end)
       >>> And = nodetype()(And)
   
     >>> c = Code()      >>> c = Code()
     >>> c.return_( And([1, 2]) )      >>> c.return_( And([1, 2]) )
Line 725 
Line 1083 
                   7 LOAD_CONST               1 (False)                    7 LOAD_CONST               1 (False)
             >>   10 RETURN_VALUE              >>   10 RETURN_VALUE
   
   The above example only folds constants at code generation time, however.  You
   can also do constant folding at AST construction time, using the
   ``fold_args()`` function.  For example::
   
       >>> from peak.util.assembler import fold_args
   
       >>> def Getattr(ob, name, code=None):
       ...     try:
       ...         name = const_value(name)
       ...     except NotAConstant:
       ...         return Call(Const(getattr), [ob, name])
       ...     if code is None:
       ...         return fold_args(Getattr, ob, name)
       ...     code(ob)
       ...     code.LOAD_ATTR(name)
       >>> Getattr = nodetype()(Getattr)
   
       >>> const_value(Getattr(1, '__class__'))
       <type 'int'>
   
   The ``fold_args()`` function tries to evaluate the node immediately, if all of
   its arguments are constants, by creating a temporary ``Code`` object, and
   running the supplied function against it, then doing an ``eval()`` on the
   generated code and wrapping the result in a ``Const``.  However, if any of the
   arguments are non-constant, the original arguments (less the function) are
   returned. This causes a normal node instance to be created instead of a
   ``Const``.
   
   This isn't a very *fast* way of doing partial evaluation, but it makes it
   really easy to define new code generation targets without writing custom
   constant-folding code for each one.  Just ``return fold_args(ThisType, *args)``
   instead of ``return args``, if you want your node constructor to be able to do
   eager evaluation.  If you need to, you can check your parameters in order to
   decide whether to call ``fold_args()`` or not; this is in fact how ``Call``
   implements its ``fold`` argument and the suppression of folding when
   the call has no arguments.
   
   (By the way, this same ``Getattr`` node type is also available
   
   
 Setting the Code's Calling Signature  Setting the Code's Calling Signature
 ====================================  ====================================
Line 758 
Line 1155 
     >>> c1 = Code.from_function(f1, copy_lineno=True)      >>> c1 = Code.from_function(f1, copy_lineno=True)
     >>> c1.co_firstlineno      >>> c1.co_firstlineno
     1      1
       >>> c1.co_filename is f1.func_code.co_filename
       True
   
 If you create a ``Code`` instance from a function that has nested positional  If you create a ``Code`` instance from a function that has nested positional
 arguments, the returned code object will include a prologue to unpack the  arguments, the returned code object will include a prologue to unpack the
Line 865 
Line 1264 
   
 stack_size  stack_size
     The predicted height of the runtime value stack, as of the current opcode.      The predicted height of the runtime value stack, as of the current opcode.
     Its value is automatically updated by most opcodes, but you may want to      Its value is automatically updated by most opcodes, but if you are doing
     save and restore it for things like try/finally blocks.  If you increase      something sufficiently tricky (as in the ``Switch`` demo, below) you may
     the value of this attribute, you should also update the ``co_stacksize``      need to explicitly set it.
     attribute if it is less than the new ``stack_size``.  
       The ``stack_size`` automatically becomes ``None`` after any unconditional
       jump operations, such as ``JUMP_FORWARD``, ``BREAK_LOOP``, or
       ``RETURN_VALUE``.  When the stack size is ``None``, the only operations
       that can be performed are the resolving of forward references (which will
       set the stack size to what it was when the reference was created), or
       manually setting the stack size.
   
 co_freevars  co_freevars
     A tuple of strings naming a function's "cell" variables.  Defaults to an      A tuple of strings naming a function's "free" variables.  Defaults to an
     empty tuple.  A function's free variables are the variables it "inherits"      empty tuple.  A function's free variables are the variables it "inherits"
     from its surrounding scope.  If you're going to use this, you should set      from its surrounding scope.  If you're going to use this, you should set
     it only once, before generating any code that references any free *or* cell      it only once, before generating any code that references any free *or* cell
Line 912 
Line 1317 
   
 co_stacksize  co_stacksize
     The maximum amount of stack space the code will require to run.  This      The maximum amount of stack space the code will require to run.  This
     value is usually updated automatically as you generate code.  However, if      value is updated automatically as you generate code or change
     you manually set a new ``stack_size`` that is larger than the current      the ``stack_size`` attribute.
     ``co_stacksize``, you should increase the ``co_stacksize`` to match, so  
     that ``co_stacksize`` is always the largest stack size the code will  
     generate at runtime.  
   Stack Size Tracking and Dead Code Detection
   ===========================================
   
   ``Code`` objects automatically track the predicted stack size as code is
   generated, by updating the ``stack_size`` attribute as each operation occurs.
   A history is kept so that backward jumps can be checked to ensure that the
   current stack height is the same as at the jump's target.  Similarly, when
   forward jumps are resolved, the stack size at the jump target is checked
   against the stack size at the jump's origin.  If there are multiple jumps to
   the same location, they must all have the same stack size at the origin and
   the destination.
   
   In addition, whenever any unconditional jump code is generated (i.e.
   ``JUMP_FORWARD``, ``BREAK_LOOP``, ``CONTINUE_LOOP``, ``JUMP_ABSOLUTE``, or
   ``RETURN_VALUE``), the predicted ``stack_size`` is set to ``None``.  This
   means that the ``Code`` object does not know what the stack size will be at
   the current location.  You cannot issue *any* instructions when the predicted
   stack size is ``None``, as you will receive an ``AssertionError``::
   
       >>> c = Code()
       >>> fwd = c.JUMP_FORWARD()
       >>> print c.stack_size  # forward jump marks stack size as unknown
       None
   
       >>> c.LOAD_CONST(42)
       Traceback (most recent call last):
         ...
       AssertionError: Unknown stack size at this location
   
   Instead, you must resolve a forward reference (or define a previously-jumped to
   label).  This will propagate the stack size at the source of the jump to the
   current location, updating the stack size::
   
       >>> fwd()
       >>> c.stack_size
       0
   
   Note, by the way, that this means it is impossible for you to generate static
   "dead code".  In other words, you cannot generate code that isn't reachable.
   You should therefore check if ``stack_size`` is ``None`` before generating
   code that might be unreachable.  For example, consider this ``If``
   implementation::
   
       >>> def If(cond, then, else_=Pass, code=None):
       ...     if code is None:
       ...         return cond, then, else_
       ...     else_clause = Label()
       ...     end_if = Label()
       ...     code(cond, else_clause.JUMP_IF_FALSE, Code.POP_TOP, then)
       ...     code(end_if.JUMP_FORWARD, else_clause, Code.POP_TOP, else_)
       ...     code(end_if)
       >>> If = nodetype()(If)
   
   It works okay if there's no dead code::
   
       >>> c = Code()
       >>> c( If(23, 42, 55) )
       >>> dis(c.code())   # Python 2.3 may peephole-optimize this code
         0           0 LOAD_CONST               1 (23)
                     3 JUMP_IF_FALSE            7 (to 13)
                     6 POP_TOP
                     7 LOAD_CONST               2 (42)
                    10 JUMP_FORWARD             4 (to 17)
               >>   13 POP_TOP
                    14 LOAD_CONST               3 (55)
   
   But it breaks if you end the "then" block with a return::
   
       >>> c = Code()
       >>> c( If(23, Return(42), 55) )
       Traceback (most recent call last):
         ...
       AssertionError: Unknown stack size at this location
   
   What we need is something like this instead::
   
       >>> def If(cond, then, else_=Pass, code=None):
       ...     if code is None:
       ...         return cond, then, else_
       ...     else_clause = Label()
       ...     end_if = Label()
       ...     code(cond, else_clause.JUMP_IF_FALSE, Code.POP_TOP, then)
       ...     if code.stack_size is not None:
       ...         end_if.JUMP_FORWARD(code)
       ...     code(else_clause, Code.POP_TOP, else_, end_if)
       >>> If = nodetype()(If)
   
   As you can see, the dead code is now eliminated::
   
       >>> c = Code()
       >>> c( If(23, Return(42), 55) )
       >>> dis(c.code())   # Python 2.3 may peephole-optimize this code
         0           0 LOAD_CONST               1 (23)
                     3 JUMP_IF_FALSE            5 (to 11)
                     6 POP_TOP
                     7 LOAD_CONST               2 (42)
                    10 RETURN_VALUE
               >>   11 POP_TOP
                    12 LOAD_CONST               3 (55)
   
   
 Blocks, Loops, and Exception Handling  Blocks, Loops, and Exception Handling
Line 946 
Line 1450 
     >>> c.code()      >>> c.code()
     <code object <lambda> ...>      <code object <lambda> ...>
   
 ``Code`` objects also check that the stack level as of a ``POP_BLOCK`` is the  
 same as it was when the block was set up::  
   
     >>> c = Code()  
     >>> c.SETUP_LOOP()  
     >>> c.LOAD_CONST(23)  
     >>> c.POP_BLOCK()  
     Traceback (most recent call last):  
       ...  
     AssertionError: Stack level mismatch: actual=1 expected=0  
   
   
 Exception Stack Size Adjustment  Exception Stack Size Adjustment
 -------------------------------  -------------------------------
   
 When you ``POP_BLOCK`` for a ``SETUP_EXCEPT`` or ``SETUP_FINALLY``, the code's  When you issue a ``SETUP_EXCEPT`` or ``SETUP_FINALLY``, the code's maximum
 maximum stack size is raised to ensure that it's at least 3 items higher than  stack size is raised to ensure that it's at least 3 items higher than
 the current stack size.  That way, there will be room for the items that Python  the current stack size.  That way, there will be room for the items that Python
 puts on the stack when jumping to a block's exception handling code::  puts on the stack when jumping to a block's exception handling code::
   
     >>> c = Code()      >>> c = Code()
     >>> c.SETUP_FINALLY()      >>> c.SETUP_FINALLY()
     >>> c.stack_size, c.co_stacksize      >>> c.stack_size, c.co_stacksize
     (0, 0)  
     >>> c.POP_BLOCK()  
     >>> c.END_FINALLY()  
     >>> c.stack_size, c.co_stacksize  
     (0, 3)      (0, 3)
   
 As you can see, the current stack size is unchanged, but the maximum stack size  As you can see, the current stack size is unchanged, but the maximum stack size
Line 982 
Line 1471 
     >>> c = Code()      >>> c = Code()
     >>> c(1,2,3,4, *[Code.POP_TOP]*4)   # push 4 things, then pop 'em      >>> c(1,2,3,4, *[Code.POP_TOP]*4)   # push 4 things, then pop 'em
     >>> c.SETUP_FINALLY()      >>> c.SETUP_FINALLY()
     >>> c.POP_BLOCK()  
     >>> c.END_FINALLY()  
     >>> c.stack_size, c.co_stacksize      >>> c.stack_size, c.co_stacksize
     (0, 4)      (0, 4)
   
Line 992 
Line 1479 
   
     >>> c = Code()      >>> c = Code()
     >>> c.SETUP_LOOP()      >>> c.SETUP_LOOP()
     >>> break_to = c.POP_BLOCK()  
     >>> c.stack_size, c.co_stacksize      >>> c.stack_size, c.co_stacksize
     (0, 0)      (0, 0)
   
Line 1000 
Line 1486 
 Try/Except Blocks  Try/Except Blocks
 -----------------  -----------------
   
 In the case of ``SETUP_EXCEPT``, the *current* stack size is also increased by  In the case of ``SETUP_EXCEPT``, the *current* stack size is increased by 3
 3, because the code following the ``POP_BLOCK`` will be the exception handler  after a ``POP_BLOCK``, because the code that follows will be an exception
 and will thus always have exception items on the stack::  handler and will thus always have exception items on the stack::
   
     >>> c = Code()      >>> c = Code()
     >>> c.SETUP_EXCEPT()      >>> c.SETUP_EXCEPT()
Line 1059 
Line 1545 
             >>   10 LOAD_CONST               0 (None)              >>   10 LOAD_CONST               0 (None)
                  13 RETURN_VALUE                   13 RETURN_VALUE
   
 Labels have a ``POP_BLOCK`` attribute that you can pass in when generating  (Labels have a ``POP_BLOCK`` attribute that you can pass in when generating
 code.  code.)
   
   And, for generating typical try/except blocks, you can use the ``TryExcept``
   node type, which takes a body, a sequence of exception-type/handler pairs,
   and an optional "else" clause::
   
       >>> from peak.util.assembler import TryExcept
       >>> c = Code()
       >>> c.return_(
       ...     TryExcept(
       ...         Return(1),                                      # body
       ...         [(Const(KeyError),2), (Const(TypeError),3)],    # handlers
       ...         Return(4)                                       # else clause
       ...     )
       ... )
   
       >>> dis(c.code())
         0           0 SETUP_EXCEPT             8 (to 11)
                     3 LOAD_CONST               1 (1)
                     6 RETURN_VALUE
                     7 POP_BLOCK
                     8 JUMP_FORWARD            43 (to 54)
               >>   11 DUP_TOP
                    12 LOAD_CONST               2 (<type 'exceptions.KeyError'>)
                    15 COMPARE_OP              10 (exception match)
                    18 JUMP_IF_FALSE           10 (to 31)
                    21 POP_TOP
                    22 POP_TOP
                    23 POP_TOP
                    24 POP_TOP
                    25 LOAD_CONST               3 (2)
                    28 JUMP_FORWARD            27 (to 58)
               >>   31 POP_TOP
                    32 DUP_TOP
                    33 LOAD_CONST               4 (<type 'exceptions.TypeError'>)
                    36 COMPARE_OP              10 (exception match)
                    39 JUMP_IF_FALSE           10 (to 52)
                    42 POP_TOP
                    43 POP_TOP
                    44 POP_TOP
                    45 POP_TOP
                    46 LOAD_CONST               5 (3)
                    49 JUMP_FORWARD             6 (to 58)
               >>   52 POP_TOP
                    53 END_FINALLY
               >>   54 LOAD_CONST               6 (4)
                    57 RETURN_VALUE
               >>   58 RETURN_VALUE
   
   
 Try/Finally Blocks  Try/Finally Blocks
Line 1097 
Line 1630 
 adjusts the maximum expected stack size to accomodate up to three values being  adjusts the maximum expected stack size to accomodate up to three values being
 put on the stack by the Python interpreter for exception handling.  put on the stack by the Python interpreter for exception handling.
   
   For your convenience, the ``TryFinally`` node type can also be used to generate
   try/finally blocks::
   
       >>> from peak.util.assembler import TryFinally
       >>> c = Code()
       >>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
       >>> dis(c.code())
         0           0 SETUP_FINALLY            8 (to 11)
                     3 LOAD_CONST               1 (1)
                     6 POP_TOP
                     7 POP_BLOCK
                     8 LOAD_CONST               0 (None)
               >>   11 LOAD_CONST               2 (2)
                    14 POP_TOP
                    15 END_FINALLY
   
   
 Loops  Loops
 -----  -----
Line 1168 
Line 1717 
 And ``CONTINUE_LOOP`` is automatically replaced with a ``JUMP_ABSOLUTE`` if  And ``CONTINUE_LOOP`` is automatically replaced with a ``JUMP_ABSOLUTE`` if
 it occurs directly inside a loop block::  it occurs directly inside a loop block::
   
       >>> c.LOAD_CONST(57)
     >>> c.SETUP_LOOP()      >>> c.SETUP_LOOP()
       >>> fwd = c.JUMP_IF_TRUE()
     >>> c.CONTINUE_LOOP(c.here())      >>> c.CONTINUE_LOOP(c.here())
       >>> fwd()
     >>> c.BREAK_LOOP()      >>> c.BREAK_LOOP()
     >>> c.POP_BLOCK()()      >>> c.POP_BLOCK()()
     >>> dis(c.code())      >>> dis(c.code())
       0           0 SETUP_LOOP               5 (to 8)        0           0 LOAD_CONST               1 (57)
             >>    3 JUMP_ABSOLUTE            3                    3 SETUP_LOOP               8 (to 14)
                   6 BREAK_LOOP                    6 JUMP_IF_TRUE             3 (to 12)
                   7 POP_BLOCK              >>    9 JUMP_ABSOLUTE            9
               >>   12 BREAK_LOOP
                    13 POP_BLOCK
   
 In other words, ``CONTINUE_LOOP`` only really emits a ``CONTINUE_LOOP`` opcode  In other words, ``CONTINUE_LOOP`` only really emits a ``CONTINUE_LOOP`` opcode
 if it's inside some other kind of block within the loop, e.g. a "try" clause::  if it's inside some other kind of block within the loop, e.g. a "try" clause::
   
     >>> c = Code()      >>> c = Code()
       >>> c.LOAD_CONST(57)
     >>> c.SETUP_LOOP()      >>> c.SETUP_LOOP()
     >>> loop = c.here()      >>> loop = c.here()
     >>> c.SETUP_FINALLY()      >>> c.SETUP_FINALLY()
       >>> fwd = c.JUMP_IF_TRUE()
     >>> c.CONTINUE_LOOP(loop)      >>> c.CONTINUE_LOOP(loop)
       >>> fwd()
     >>> c.POP_BLOCK()      >>> c.POP_BLOCK()
     >>> c.END_FINALLY()      >>> c.END_FINALLY()
     >>> c.POP_BLOCK()()      >>> c.POP_BLOCK()()
     >>> dis(c.code())      >>> dis(c.code())
       0           0 SETUP_LOOP              12 (to 15)        0           0 LOAD_CONST               1 (57)
             >>    3 SETUP_FINALLY            7 (to 13)                    3 SETUP_LOOP              15 (to 21)
                   6 CONTINUE_LOOP            3              >>    6 SETUP_FINALLY           10 (to 19)
                   9 POP_BLOCK                    9 JUMP_IF_TRUE             3 (to 15)
                  10 LOAD_CONST               0 (None)                   12 CONTINUE_LOOP            6
             >>   13 END_FINALLY              >>   15 POP_BLOCK
                  14 POP_BLOCK                   16 LOAD_CONST               0 (None)
               >>   19 END_FINALLY
                    20 POP_BLOCK
   
   
 ----------------------  ----------------------
Line 1244 
Line 1801 
   
 Stack size tracking::  Stack size tracking::
   
     >>> c = Code()      >>> c = Code()          # 0
     >>> c.LOAD_CONST(1)      >>> c.LOAD_CONST(1)     # 1
     >>> c.POP_TOP()      >>> c.POP_TOP()         # 0
     >>> c.LOAD_CONST(2)      >>> c.LOAD_CONST(2)     # 1
     >>> c.LOAD_CONST(3)      >>> c.LOAD_CONST(3)     # 2
     >>> c.co_stacksize      >>> c.co_stacksize
     2      2
     >>> c.BINARY_ADD()      >>> c.stack_history
     >>> c.LOAD_CONST(4)      [0, ..., 1, 0, ..., 1]
       >>> c.BINARY_ADD()      # 1
       >>> c.LOAD_CONST(4)     # 2
     >>> c.co_stacksize      >>> c.co_stacksize
     2      2
       >>> c.stack_history
       [0, ..., 1, 0, 1, ..., 2, ..., 1]
     >>> c.LOAD_CONST(5)      >>> c.LOAD_CONST(5)
     >>> c.LOAD_CONST(6)      >>> c.LOAD_CONST(6)
     >>> c.co_stacksize      >>> c.co_stacksize
Line 1290 
Line 1851 
                   3 LOAD_ATTR                1 (bar)                    3 LOAD_ATTR                1 (bar)
                   6 DELETE_FAST              0 (baz)                    6 DELETE_FAST              0 (baz)
   
   
   Stack tracking on jumps::
   
       >>> c = Code()
       >>> else_ = Label()
       >>> end = Label()
       >>> c(99, else_.JUMP_IF_TRUE, Code.POP_TOP, end.JUMP_FORWARD)
       >>> c(else_, Code.POP_TOP, end)
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (99)
                     3 JUMP_IF_TRUE             4 (to 10)
                     6 POP_TOP
                     7 JUMP_FORWARD             1 (to 11)
               >>   10 POP_TOP
   
       >>> c.stack_size
       0
       >>> c.stack_history
       [0, 1, 1, 1, 1, 1, 1, 0, None, None, 1]
   
       >>> c = Code()
       >>> fwd = c.JUMP_FORWARD()
       >>> c.LOAD_CONST(42)    # forward jump marks stack size unknown
       Traceback (most recent call last):
         ...
       AssertionError: Unknown stack size at this location
   
       >>> c.stack_size = 0
       >>> c.LOAD_CONST(42)
       >>> fwd()
       Traceback (most recent call last):
         ...
       AssertionError: Stack level mismatch: actual=1 expected=0
   
   
   
   
   
 Sequence operators and stack tracking:  Sequence operators and stack tracking:
   
   
Line 1526 
Line 2125 
                  15 STORE_FAST               4 (a)                   15 STORE_FAST               4 (a)
                  18 STORE_FAST               5 (b)                   18 STORE_FAST               5 (b)
   
 Constant folding for *args and **kw::  Constant folding for ``*args`` and ``**kw``::
   
     >>> c = Code()      >>> c = Code()
     >>> c.return_(Call(Const(type), [], [], (1,)))      >>> c.return_(Call(Const(type), [], [], (1,)))
Line 1542 
Line 2141 
                   3 RETURN_VALUE                    3 RETURN_VALUE
   
   
   
 Demo: "Computed Goto"/"Switch Statement"  Demo: "Computed Goto"/"Switch Statement"
 ========================================  ========================================
   
Line 1551 
Line 2149 
   
     >>> from peak.util.assembler import LOAD_CONST, POP_BLOCK      >>> from peak.util.assembler import LOAD_CONST, POP_BLOCK
   
     >>> def Pass(code=None):  
     ...     if code is None:  
     ...         return Pass  
   
     >>> def NewConst(value, code=None):  
     ...     if code is None:  
     ...         return ast_curry(NewConst, value)  
     ...     code.emit_arg(LOAD_CONST, len(code.co_consts))  
     ...     code.co_consts.append(value)  
     ...     code.stackchange((0,1))  
   
     >>> import sys      >>> import sys
     >>> WHY_CONTINUE = {'2.3':5, '2.4':32, '2.5':32}[sys.version[:3]]      >>> WHY_CONTINUE = {'2.3':5, '2.4':32, '2.5':32}[sys.version[:3]]
   
     >>> def Switch(expr, cases, default=Pass, code=None):      >>> def Switch(expr, cases, default=Pass, code=None):
     ...     if code is None:      ...     if code is None:
     ...         return ast_curry(Switch, expr, tuple(cases), default)      ...         return expr, tuple(cases), default
     ...      ...
     ...     d = {}      ...     d = {}
     ...     else_block  = Label()      ...     else_block  = Label()
Line 1576 
Line 2163 
     ...      ...
     ...     code(      ...     code(
     ...         end_switch.SETUP_LOOP,      ...         end_switch.SETUP_LOOP,
     ...             Call(NewConst(d.get), [expr]),      ...             Call(Const(d.get), [expr]),
     ...         else_block.JUMP_IF_FALSE,      ...         else_block.JUMP_IF_FALSE,
     ...             WHY_CONTINUE, Code.END_FINALLY      ...             WHY_CONTINUE, Code.END_FINALLY
     ...     )      ...     )
     ...      ...
     ...     cursize = code.stack_size      ...     cursize = code.stack_size - 1   # adjust for removed WHY_CONTINUE
     ...     for key, value in cases:      ...     for key, value in cases:
     ...         d[const_value(key)] = code.here()      ...         d[const_value(key)] = code.here()
     ...         code(value, cleanup.JUMP_FORWARD)      ...         code.stack_size = cursize
       ...         code(value)
       ...         if code.stack_size is not None: # if the code can fall through,
       ...             code(cleanup.JUMP_FORWARD)  # jump forward to the cleanup
     ...      ...
     ...     code(      ...     code(
     ...         else_block,      ...         else_block,
Line 1593 
Line 2183 
     ...             Code.POP_BLOCK,      ...             Code.POP_BLOCK,
     ...         end_switch      ...         end_switch
     ...     )      ...     )
       >>> Switch = nodetype()(Switch)
   
     >>> c = Code()      >>> c = Code()
     >>> c.co_argcount=1      >>> c.co_argcount=1
Line 1608 
Line 2199 
     27      27
   
     >>> dis(c.code())      >>> dis(c.code())
       0           0 SETUP_LOOP              36 (to 39)        0           0 SETUP_LOOP              30 (to 33)
                   3 LOAD_CONST               1 (<...method get of dict...>)                    3 LOAD_CONST               1 (<...method get of dict...>)
                   6 LOAD_FAST                0 (x)                    6 LOAD_FAST                0 (x)
                   9 CALL_FUNCTION            1                    9 CALL_FUNCTION            1
                  12 JUMP_IF_FALSE           18 (to 33)                   12 JUMP_IF_FALSE           12 (to 27)
                  15 LOAD_CONST               2 (...)                   15 LOAD_CONST               2 (...)
                  18 END_FINALLY                   18 END_FINALLY
                  19 LOAD_CONST               3 (42)                   19 LOAD_CONST               3 (42)
                  22 RETURN_VALUE                   22 RETURN_VALUE
                  23 JUMP_FORWARD            12 (to 38)                   23 LOAD_CONST               4 ('foo')
                  26 LOAD_CONST               4 ('foo')                   26 RETURN_VALUE
                  29 RETURN_VALUE              >>   27 POP_TOP
                  30 JUMP_FORWARD             5 (to 38)                   28 LOAD_CONST               5 (27)
             >>   33 POP_TOP                   31 RETURN_VALUE
                  34 LOAD_CONST               5 (27)                   32 POP_BLOCK
                  37 RETURN_VALUE              >>   33 LOAD_CONST               0 (None)
             >>   38 POP_BLOCK                   36 RETURN_VALUE
             >>   39 LOAD_CONST               0 (None)  
                  42 RETURN_VALUE  
   
   
 TODO  TODO
 ====  ====
   
 * AST introspection  
     * ast_type(node): called function, Const, or node.__class__  
       * tuples are Const if their contents are; no other types are Const  
     * ast_children(node): tuple of argument values for curried types, const value,  
       or empty tuple.  If node is a tuple, the value must be flattened.  
     * is_const(node): ast_type(node) is Const  
   
 * Inline builtins (getattr, operator.getitem, etc.) to opcodes  
     * Getattr/Op/Unary("symbol", arg1 [, arg2]) node types -> Call() if folding  
     * Call() translates functions back to Ops if inlining  
   
 * Pretty printing and short-naming of ASTs  
   
 * Test NAME vs. FAST operators flag checks/sets  * Test NAME vs. FAST operators flag checks/sets
   
 * Test code flags generation/cloning  * Test code flags generation/cloning
   
   * Exhaustive tests of all opcodes' stack history effects
   
   * YIELD_EXPR should set CO_GENERATOR; stack effects depend on Python version
   


Generate output suitable for use with a patch program
Legend:
Removed from v.2194  
changed lines
  Added in v.2457

cvs-admin@eby-sarna.com

Powered by ViewCVS 1.0-dev

ViewCVS and CVS Help