[Subversion] / BytecodeAssembler / README.txt  

Diff of /BytecodeAssembler/README.txt

Parent Directory | Revision Log

version 2457, Sun Dec 30 20:10:36 2007 UTC version 2620, Mon Aug 2 07:06:28 2010 UTC
Line 14 
Line 14 
 the work needed to transform tree-like structures into linear bytecode  the work needed to transform tree-like structures into linear bytecode
 instructions, and includes the ability to do compile-time constant folding.  instructions, and includes the ability to do compile-time constant folding.
   
   Please see the `BytecodeAssembler reference manual`_ for more details.
   
   .. _BytecodeAssembler reference manual: http://peak.telecommunity.com/DevCenter/BytecodeAssembler#toc
   
   Changes since version 0.5:
   
   * Fix incorrect stack size calculation for ``MAKE_CLOSURE`` on Python 2.5+
   
   Changes since version 0.3:
   
   * New node types:
   
     * ``For(iterable, assign, body)`` -- define a "for" loop over `iterable`
   
     * ``UnpackSequence(nodes)`` -- unpacks a sequence that's ``len(nodes)`` long,
       and then generates the given nodes.
   
     * ``LocalAssign(name)`` -- issues a ``STORE_FAST``, ``STORE_DEREF`` or
       ``STORE_LOCAL`` as appropriate for the given name.
   
     * ``Function(body, name='<lambda>', args=(), var=None, kw=None, defaults=())``
       -- creates a nested function from `body` and puts it on the stack.
   
     * ``If(cond, then_, else_=Pass)`` -- "if" statement analogue
   
     * ``ListComp(body)`` and ``LCAppend(value)`` -- implement list comprehensions
   
     * ``YieldStmt(value)`` -- generates a ``YIELD_VALUE`` (plus a ``POP_TOP`` in
       Python 2.5+)
   
   * ``Code`` objects are now iterable, yielding ``(offset, op, arg)`` triples,
     where `op` is numeric and `arg` is either numeric or ``None``.
   
   * ``Code`` objects' ``.code()`` method can now take a "parent" ``Code`` object,
     to link the child code's free variables to cell variables in the parent.
   
   * Added ``Code.from_spec()`` classmethod, that initializes a code object from a
     name and argument spec.
   
   * ``Code`` objects now have a ``.nested(name, args, var, kw)`` method, that
     creates a child code object with the same ``co_filename`` and the supplied
     name/arg spec.
   
   * Fixed incorrect stack tracking for the ``FOR_ITER`` and ``YIELD_VALUE``
     opcodes
   
   * Ensure that ``CO_GENERATOR`` flag is set if ``YIELD_VALUE`` opcode is used
   
   * Change tests so that Python 2.3's broken line number handling in ``dis.dis``
     and constant-folding optimizer don't generate spurious failures in this
     package's test suite.
   
   
 Changes since version 0.2:  Changes since version 0.2:
   
 * Added ``Suite``, ``TryExcept``, and ``TryFinally`` node types  * Added ``Suite``, ``TryExcept``, and ``TryFinally`` node types
Line 81 
Line 134 
 * Jumps to as-yet-undefined labels cannot span a distance greater than 65,535  * Jumps to as-yet-undefined labels cannot span a distance greater than 65,535
   bytes.    bytes.
   
 * The ``dis()`` module in Python 2.3 has a bug that makes it show incorrect  * The ``dis()`` function in Python 2.3 has a bug that makes it show incorrect
   line numbers when the difference between two adjacent line numbers is    line numbers when the difference between two adjacent line numbers is
   greater than 255.  This causes two shallow failures in the current test    greater than 255.  (To work around this, the test_suite uses a later version
   suite when it's run under Python 2.3.    of ``dis()``, but do note that it may affect your own tests if you use
     ``dis()`` with Python 2.3 and use widely separated line numbers.)
   
 If you find any other issues, please let me know.  If you find any other issues, please let me know.
   
Line 94 
Line 148 
 Questions and discussion regarding this software should be directed to the  Questions and discussion regarding this software should be directed to the
 `PEAK Mailing List <http://www.eby-sarna.com/mailman/listinfo/peak>`_.  `PEAK Mailing List <http://www.eby-sarna.com/mailman/listinfo/peak>`_.
   
   .. _toc:
 .. contents:: **Table of Contents**  .. contents:: **Table of Contents**
   
   
Line 144 
Line 199 
     >>> f()      >>> f()
     42      42
   
   Finally, code objects are also iterable, yielding ``(offset, opcode, arg)``
   tuples, where `arg` is ``None`` for opcodes with no arguments, and an integer
   otherwise::
   
       >>> import peak.util.assembler as op
       >>> list(c) == [
       ...     (0, op.LOAD_CONST, 1),
       ...     (3, op.RETURN_VALUE, None)
       ... ]
       True
   
   This can be useful for testing or otherwise inspecting code you've generated.
   
   
 Opcodes and Arguments  Opcodes and Arguments
 =====================  =====================
Line 289 
Line 357 
     >>> c = Code()      >>> c = Code()
     >>> c.co_cellvars = ('a','b')      >>> c.co_cellvars = ('a','b')
   
       >>> import sys
     >>> c.LOAD_CLOSURE('a')      >>> c.LOAD_CLOSURE('a')
     >>> c.LOAD_CLOSURE('b')      >>> c.LOAD_CLOSURE('b')
       >>> if sys.version>='2.5':
       ...     c.BUILD_TUPLE(2) # In Python 2.5+, free vars must be in a tuple
     >>> c.LOAD_CONST(None)  # in real code, this'd be a Python code constant      >>> c.LOAD_CONST(None)  # in real code, this'd be a Python code constant
     >>> c.MAKE_CLOSURE(0,2) # no defaults, 2 free vars in the new function      >>> c.MAKE_CLOSURE(0,2) # no defaults, 2 free vars in the new function
   
       >>> c.stack_size         # This will be 1, no matter what Python version
       1
   
 The ``COMPARE_OP`` method takes an argument which can be a valid comparison  The ``COMPARE_OP`` method takes an argument which can be a valid comparison
 integer constant, or a string containing a Python operator, e.g.::  integer constant, or a string containing a Python operator, e.g.::
   
Line 479 
Line 553 
       0           0 LOAD_FAST                0 (x)        0           0 LOAD_FAST                0 (x)
                   3 LOAD_GLOBAL              0 (y)                    3 LOAD_GLOBAL              0 (y)
   
   
 As with simple constants and ``Const`` wrappers, these objects can be used to  As with simple constants and ``Const`` wrappers, these objects can be used to
 construct more complex expressions, like ``{a:(b,c)}``::  construct more complex expressions, like ``{a:(b,c)}``::
   
Line 495 
Line 568 
                  16 ROT_THREE                   16 ROT_THREE
                  17 STORE_SUBSCR                   17 STORE_SUBSCR
   
   The ``LocalAssign`` node type takes a name, and stores a value in a local
   variable::
   
       >>> from peak.util.assembler import LocalAssign
       >>> c = Code()
       >>> c(42, LocalAssign('x'))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               0 (x)
   
 If the code object is not using "fast locals" (i.e. ``CO_OPTIMIZED`` isn't  If the code object is not using "fast locals" (i.e. ``CO_OPTIMIZED`` isn't
 set), local variables will be dereferenced using ``LOAD_NAME`` instead of  set), local variables will be referenced using ``LOAD_NAME`` and ``STORE_NAME``
 ``LOAD_FAST``, and if the referenced local name is a "cell" or "free"  instead of ``LOAD_FAST`` and ``STORE_FAST``, and if the referenced local name
 variable, ``LOAD_DEREF`` is used instead::  is a "cell" or "free" variable, ``LOAD_DEREF`` and ``STORE_DEREF`` are used
   instead::
   
     >>> from peak.util.assembler import CO_OPTIMIZED      >>> from peak.util.assembler import CO_OPTIMIZED
     >>> c = Code()      >>> c = Code()
Line 506 
Line 590 
     >>> c.co_cellvars = ('y',)      >>> c.co_cellvars = ('y',)
     >>> c.co_freevars = ('z',)      >>> c.co_freevars = ('z',)
     >>> c( Local('x'), Local('y'), Local('z') )      >>> c( Local('x'), Local('y'), Local('z') )
       >>> c( LocalAssign('x'), LocalAssign('y'), LocalAssign('z') )
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_NAME                0 (x)        0           0 LOAD_NAME                0 (x)
                   3 LOAD_DEREF               0 (y)                    3 LOAD_DEREF               0 (y)
                   6 LOAD_DEREF               1 (z)                    6 LOAD_DEREF               1 (z)
                     9 STORE_NAME               0 (x)
                    12 STORE_DEREF              0 (y)
                    15 STORE_DEREF              1 (z)
   
   
 Obtaining Attributes  Obtaining Attributes
Line 622 
Line 710 
                   3 RETURN_VALUE                    3 RETURN_VALUE
   
   
   ``If`` Conditions
   -----------------
   
   The ``If()`` node type generates conditional code, roughly equivalent to a
   Python if/else statement::
   
       >>> from peak.util.assembler import If
       >>> c = Code()
       >>> c( If(Local('a'), Return(42), Return(55)) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (a)
                     3 JUMP_IF_FALSE            5 (to 11)
                     6 POP_TOP
                     7 LOAD_CONST               1 (42)
                    10 RETURN_VALUE
               >>   11 POP_TOP
                    12 LOAD_CONST               2 (55)
                    15 RETURN_VALUE
   
   However, it can also be used like a Python 2.5+ conditional expression
   (regardless of the targeted Python version)::
   
       >>> c = Code()
       >>> c( Return(If(Local('a'), 42, 55)) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (a)
                     3 JUMP_IF_FALSE            7 (to 13)
                     6 POP_TOP
                     7 LOAD_CONST               1 (42)
                    10 JUMP_FORWARD             4 (to 17)
               >>   13 POP_TOP
                    14 LOAD_CONST               2 (55)
               >>   17 RETURN_VALUE
   
   
   Note that ``If()`` does *not* do constant-folding on its condition; even if the
   condition is a constant, it will be tested at runtime.  This avoids issues with
   using mutable constants, e.g.::
   
       >>> c = Code()
       >>> c(If(Const([]), 42, 55))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 ([])
                     3 JUMP_IF_FALSE            7 (to 13)
                     6 POP_TOP
                     7 LOAD_CONST               2 (42)
                    10 JUMP_FORWARD             4 (to 17)
               >>   13 POP_TOP
                    14 LOAD_CONST               3 (55)
   
   
 Labels and Jump Targets  Labels and Jump Targets
 -----------------------  -----------------------
   
Line 734 
Line 873 
             >>   38 RETURN_VALUE              >>   38 RETURN_VALUE
   
   
   Sequence Unpacking
   ------------------
   
   The ``UnpackSequence`` node type takes a sequence of code generation targets,
   and generates an ``UNPACK_SEQUENCE`` of the correct length, followed by the
   targets::
   
       >>> from peak.util.assembler import UnpackSequence
       >>> c = Code()
       >>> c((1,2), UnpackSequence([LocalAssign('x'), LocalAssign('y')]))
       >>> dis(c.code())   # x, y = 1, 2
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (2)
                     6 BUILD_TUPLE              2
                     9 UNPACK_SEQUENCE          2
                    12 STORE_FAST               0 (x)
                    15 STORE_FAST               1 (y)
   
   
   Yield Statements
   ----------------
   
   The ``YieldStmt`` node type generates the necessary opcode(s) for a ``yield``
   statement, based on the target Python version.  (In Python 2.5+, a ``POP_TOP``
   must be generated after a ``YIELD_VALUE`` in order to create a yield statement,
   as opposed to a yield expression.)  It also sets the code flags needed to make
   the resulting code object a generator::
   
       >>> from peak.util.assembler import YieldStmt
       >>> c = Code()
       >>> c(YieldStmt(1), YieldStmt(2), Return(None))
       >>> list(eval(c.code()))
       [1, 2]
   
   
   
 Constant Detection and Folding  Constant Detection and Folding
 ==============================  ==============================
   
Line 1140 
Line 1315 
   
     >>> import inspect      >>> import inspect
   
     >>> inspect.getargspec(f1)      >>> tuple(inspect.getargspec(f1))
     (['a', 'b'], 'c', 'd', None)      (['a', 'b'], 'c', 'd', None)
   
     >>> inspect.getargspec(f2)      >>> tuple(inspect.getargspec(f2))
     (['a', 'b'], 'c', 'd', None)      (['a', 'b'], 'c', 'd', None)
   
 Note that these constructors do not copy any actual *code* from the code  Note that these constructors do not copy any actual *code* from the code
Line 1182 
Line 1357 
 unpacking process, and is designed so that the ``inspect`` module will  unpacking process, and is designed so that the ``inspect`` module will
 recognize it as an argument unpacking prologue::  recognize it as an argument unpacking prologue::
   
     >>> inspect.getargspec(f3)      >>> tuple(inspect.getargspec(f3))
     (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)      (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)
   
     >>> inspect.getargspec(f4)      >>> tuple(inspect.getargspec(f4))
     (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)      (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)
   
   You can also use the ``from_spec(name='<lambda>', args=(), var=None, kw=None)``
   classmethod to explicitly set a name and argument spec for a new code object::
   
       >>> c = Code.from_spec('a', ('b', ('c','d'), 'e'), 'f', 'g')
       >>> c.co_name
       'a'
   
       >>> c.co_varnames
       ['b', '.1', 'e', 'f', 'g', 'c', 'd']
   
       >>> c.co_argcount
       3
   
       >>> tuple(inspect.getargs(c.code()))
       (['b', ['c', 'd'], 'e'], 'f', 'g')
   
   
 Code Attributes  Code Attributes
 ===============  ===============
Line 1212 
Line 1403 
     42      42
   
     >>> import inspect      >>> import inspect
     >>> inspect.getargspec(f)      >>> tuple(inspect.getargspec(f))
     (['a', 'b', 'c'], None, None, None)      (['a', 'b', 'c'], None, None, None)
   
 Although Python code objects want ``co_varnames`` to be a tuple, ``Code``  Although Python code objects want ``co_varnames`` to be a tuple, ``Code``
Line 1378 
Line 1569 
 It works okay if there's no dead code::  It works okay if there's no dead code::
   
     >>> c = Code()      >>> c = Code()
     >>> c( If(23, 42, 55) )      >>> c( If(Local('a'), 42, 55) )
     >>> dis(c.code())   # Python 2.3 may peephole-optimize this code      >>> dis(c.code())
       0           0 LOAD_CONST               1 (23)        0           0 LOAD_FAST                0 (a)
                   3 JUMP_IF_FALSE            7 (to 13)                    3 JUMP_IF_FALSE            7 (to 13)
                   6 POP_TOP                    6 POP_TOP
                   7 LOAD_CONST               2 (42)                    7 LOAD_CONST               1 (42)
                  10 JUMP_FORWARD             4 (to 17)                   10 JUMP_FORWARD             4 (to 17)
             >>   13 POP_TOP              >>   13 POP_TOP
                  14 LOAD_CONST               3 (55)                   14 LOAD_CONST               2 (55)
   
 But it breaks if you end the "then" block with a return::  But it breaks if you end the "then" block with a return::
   
Line 1412 
Line 1603 
 As you can see, the dead code is now eliminated::  As you can see, the dead code is now eliminated::
   
     >>> c = Code()      >>> c = Code()
     >>> c( If(23, Return(42), 55) )      >>> c( If(Local('a'), Return(42), 55) )
     >>> dis(c.code())   # Python 2.3 may peephole-optimize this code      >>> dis(c.code())
       0           0 LOAD_CONST               1 (23)        0           0 LOAD_FAST                0 (a)
                   3 JUMP_IF_FALSE            5 (to 11)                    3 JUMP_IF_FALSE            5 (to 11)
                   6 POP_TOP                    6 POP_TOP
                   7 LOAD_CONST               2 (42)                    7 LOAD_CONST               1 (42)
                  10 RETURN_VALUE                   10 RETURN_VALUE
             >>   11 POP_TOP              >>   11 POP_TOP
                  12 LOAD_CONST               3 (55)                   12 LOAD_CONST               2 (55)
   
   
 Blocks, Loops, and Exception Handling  Blocks, Loops, and Exception Handling
Line 1569 
Line 1760 
                   7 POP_BLOCK                    7 POP_BLOCK
                   8 JUMP_FORWARD            43 (to 54)                    8 JUMP_FORWARD            43 (to 54)
             >>   11 DUP_TOP              >>   11 DUP_TOP
                  12 LOAD_CONST               2 (<type 'exceptions.KeyError'>)                   12 LOAD_CONST               2 (<...exceptions.KeyError...>)
                  15 COMPARE_OP              10 (exception match)                   15 COMPARE_OP              10 (exception match)
                  18 JUMP_IF_FALSE           10 (to 31)                   18 JUMP_IF_FALSE           10 (to 31)
                  21 POP_TOP                   21 POP_TOP
Line 1580 
Line 1771 
                  28 JUMP_FORWARD            27 (to 58)                   28 JUMP_FORWARD            27 (to 58)
             >>   31 POP_TOP              >>   31 POP_TOP
                  32 DUP_TOP                   32 DUP_TOP
                  33 LOAD_CONST               4 (<type 'exceptions.TypeError'>)                   33 LOAD_CONST               4 (<...exceptions.TypeError...>)
                  36 COMPARE_OP              10 (exception match)                   36 COMPARE_OP              10 (exception match)
                  39 JUMP_IF_FALSE           10 (to 52)                   39 JUMP_IF_FALSE           10 (to 52)
                  42 POP_TOP                   42 POP_TOP
Line 1757 
Line 1948 
             >>   19 END_FINALLY              >>   19 END_FINALLY
                  20 POP_BLOCK                   20 POP_BLOCK
   
   ``for`` Loops
   -------------
   
   There is a ``For()`` node type available for generating simple loops (without
   break/continue support).  It takes an iterable expression, an assignment
   clause, and a loop body::
   
       >>> from peak.util.assembler import For
       >>> y = Call(Const(range), (3,))
       >>> x = LocalAssign('x')
       >>> body = Suite([Local('x'), Code.PRINT_EXPR])
   
       >>> c = Code()
       >>> c(For(y, x, body))  # for x in range(3): print x
       >>> c.return_()
       >>> dis(c.code())
         0           0 LOAD_CONST               1 ([0, 1, 2])
                     3 GET_ITER
               >>    4 FOR_ITER                10 (to 17)
                     7 STORE_FAST               0 (x)
                    10 LOAD_FAST                0 (x)
                    13 PRINT_EXPR
                    14 JUMP_ABSOLUTE            4
               >>   17 LOAD_CONST               0 (None)
                    20 RETURN_VALUE
   
   The arguments are given in execution order: first the "in" value of the loop,
   then the assignment to a loop variable, and finally the body of the loop.  The
   distinction between the assignment and body, however, is only for clarity and
   convenience (to avoid needing to glue the assignment to the body with a
   ``Suite``).  If you already have a suite or only need one node for the entire
   loop body, you can do the same thing with only two arguments::
   
       >>> c = Code()
       >>> c(For(y, Code.PRINT_EXPR))
       >>> c.return_()
       >>> dis(c.code())
         0           0 LOAD_CONST               1 ([0, 1, 2])
                     3 GET_ITER
               >>    4 FOR_ITER                 4 (to 11)
                     7 PRINT_EXPR
                     8 JUMP_ABSOLUTE            4
               >>   11 LOAD_CONST               0 (None)
                    14 RETURN_VALUE
   
   Notice, by the way, that ``For()`` does NOT set up a loop block for you, so if
   you want to be able to use break and continue, you'll need to wrap the loop in
   a labelled SETUP_LOOP/POP_BLOCK pair, as described in the preceding sections.
   
   
   List Comprehensions
   -------------------
   
   In order to generate correct list comprehension code for the target Python
   version, you must use the ``ListComp()`` and ``LCAppend()`` node types.  This
   is because Python versions 2.4 and up store the list being built in a temporary
   variable, and use a special ``LIST_APPEND`` opcode to append values, while 2.3
   stores the list's ``append()`` method in the temporary variable, and calls it
   to append values.
   
   The ``ListComp()`` node wraps a code body (usually a ``For()`` loop) and
   manages the creation and destruction of a temporary variable (e.g. ``_[1]``,
   ``_[2]``, etc.).  The ``LCAppend()`` node type wraps a value or expression to
   be appended to the innermost active ``ListComp()`` in progress::
   
       >>> from peak.util.assembler import ListComp, LCAppend
       >>> c = Code()
       >>> simple = ListComp(For(y, x, LCAppend(Local('x'))))
       >>> c.return_(simple)
       >>> eval(c.code())
       [0, 1, 2]
   
       >>> c = Code()
       >>> c.return_(ListComp(For(y, x, LCAppend(simple))))
       >>> eval(c.code())
       [[0, 1, 2], [0, 1, 2], [0, 1, 2]]
   
   
   Closures and Nested Functions
   =============================
   
   Free and Cell Variables
   -----------------------
   
   To implement closures and nested scopes, your code objects must use "free" or
   "cell" variables in place of regular "fast locals".  A "free" variable is one
   that is defined in an outer scope, and a "cell" variable is one that's defined
   in the current scope, but will also be used by nested functions.
   
   The simplest way to set up free or cell variables is to use a code object's
   ``makefree(names)`` and ``makecells(names)`` methods::
   
       >>> c = Code()
       >>> c.co_cellvars
       ()
       >>> c.co_freevars
       ()
   
       >>> c.makefree(['x', 'y'])
       >>> c.makecells(['z'])
   
       >>> c.co_cellvars
       ('z',)
       >>> c.co_freevars
       ('x', 'y')
   
   When a name has been defined as a free or cell variable, the ``_DEREF`` opcode
   variants are used to generate ``Local()`` and ``LocalAssign()`` nodes::
   
       >>> c((Local('x'), Local('y')), LocalAssign('z'))
       >>> dis(c.code())
         0           0 LOAD_DEREF               1 (x)
                     3 LOAD_DEREF               2 (y)
                     6 BUILD_TUPLE              2
                     9 STORE_DEREF              0 (z)
   
   If you have already written code in a code object that operates on the relevant
   locals, the code is retroactively patched to use the ``_DEREF`` opcodes::
   
       >>> c = Code()
       >>> c((Local('x'), Local('y')), LocalAssign('z'))
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 BUILD_TUPLE              2
                     9 STORE_FAST               2 (z)
   
       >>> c.makefree(['x', 'y'])
       >>> c.makecells(['z'])
   
       >>> dis(c.code())
         0           0 LOAD_DEREF               1 (x)
                     3 LOAD_DEREF               2 (y)
                     6 BUILD_TUPLE              2
                     9 STORE_DEREF              0 (z)
   
   This means that you can defer the decision of which locals are free/cell
   variables until the code is ready to be generated.  In fact, by passing in
   a "parent" code object to the ``.code()`` method, you can get BytecodeAssembler
   to automatically call ``makefree()`` and ``makecells()`` for the correct
   variable names in the child and parent code objects, as we'll see in the next
   section.
   
   
   Nested Code Objects
   -------------------
   
   To create a code object for use in a nested scope, you can use the parent code
   object's ``nested()`` method.  It works just like the ``from_spec()``
   classmethod, except that the ``co_filename`` of the parent is copied to the
   child::
   
       >>> p = Code()
       >>> p.co_filename = 'testname'
   
       >>> c = p.nested('sub', ['a','b'], 'c', 'd')
   
       >>> c.co_name
       'sub'
   
       >>> c.co_filename
       'testname'
   
       >>> tuple(inspect.getargs(c.code(p)))
       (['a', 'b'], 'c', 'd')
   
   Notice that you must pass the parent code object to the child's ``.code()``
   method to ensure that free/cell variables are properly set up.  When the
   ``code()`` method is given another code object as a parameter, it automatically
   converts any locally-read (but not written) to "free" variables in the child
   code, and ensures that those same variables become "cell" variables in the
   supplied parent code object::
   
       >>> p.LOAD_CONST(42)
       >>> p(LocalAssign('a'))
       >>> dis(p.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               0 (a)
   
       >>> c = p.nested()
       >>> c(Local('a'))
   
       >>> dis(c.code(p))
         0           0 LOAD_DEREF               0 (a)
   
       >>> dis(p.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (a)
   
   Notice that the ``STORE_FAST`` in the parent code object was automatically
   patched to a ``STORE_DEREF``, with an updated offset if applicable.  Any
   future use of ``Local('a')`` or ``LocalAssign('a')`` in the parent or child
   code objects will now refer to the free/cell variable, rather than the "local"
   variable::
   
       >>> p(Local('a'))
       >>> dis(p.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (a)
                     6 LOAD_DEREF               0 (a)
   
       >>> c(LocalAssign('a'))
       >>> dis(c.code(p))
         0           0 LOAD_DEREF               0 (a)
                     3 STORE_DEREF              0 (a)
   
   
   ``Function()``
   --------------
   
   The ``Function(body, name='<lambda>', args=(), var=None, kw=None, defaults=())``
   node type creates a function object from the specified body and the optional
   name, argument specs, and defaults.  The ``Function()`` node generates code to
   create the function object with the appropriate defaults and closure (if
   applicable), and any needed free/cell variables are automatically set up in the
   parent and child code objects.  The newly generated function will be on top of
   the stack at the end of the generated code::
   
       >>> from peak.util.assembler import Function
       >>> c = Code()
       >>> c.co_filename = '<string>'
       >>> c.return_(Function(Return(Local('a')), 'f', ['a'], defaults=[42]))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 LOAD_CONST               2 (<... f ..., file "<string>", line -1>)
                     6 MAKE_FUNCTION            1
                     9 RETURN_VALUE
   
   Now that we've generated the code for a function returning a function, let's
   run it, to get the function we defined::
   
       >>> f = eval(c.code())
       >>> f
       <function f at ...>
   
       >>> tuple(inspect.getargspec(f))
       (['a'], None, None, (42,))
   
       >>> f()
       42
   
       >>> f(99)
       99
   
   Now let's create a doubly nested function, with some extras::
   
       >>> c = Code()
       >>> c.co_filename = '<string>'
       >>> c.return_(
       ...     Function(Return(Function(Return(Local('a')))),
       ...     'f', ['a', 'b'], 'c', 'd', [99, 66])
       ... )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (99)
                     3 LOAD_CONST               2 (66)
                     6 LOAD_CONST               3 (<... f ..., file "<string>", line -1>)
                     9 MAKE_FUNCTION            2
                    12 RETURN_VALUE
   
       >>> f = eval(c.code())
       >>> f
       <function f at ...>
   
       >>> tuple(inspect.getargspec(f))
       (['a', 'b'], 'c', 'd', (99, 66))
   
       >>> dis(f)
         0           0 LOAD_CLOSURE             0 (a)
                     ... LOAD_CONST               1 (<... <lambda> ..., file "<string>", line -1>)
                     ... MAKE_CLOSURE             0
                     ... RETURN_VALUE
   
       >>> dis(f())
         0           0 LOAD_DEREF               0 (a)
                     3 RETURN_VALUE
   
       >>> f(42)()
       42
   
       >>> f()()
       99
   
   As you can see, ``Function()`` not only takes care of setting up free/cell
   variables in all the relevant scopes, it also chooses whether to use
   ``MAKE_FUNCTION`` or ``MAKE_CLOSURE``, and generates code for the defaults.
   
   (Note, by the way, that the `defaults` argument should be a sequence of
   generatable expressions; in the examples here, we used numbers, but they could
   have been arbitrary expression nodes.)
   
   
 ----------------------  ----------------------
 Internals and Doctests  Internals and Doctests
Line 1779 
Line 2260 
     >>> simple_code(1,1).co_stacksize      >>> simple_code(1,1).co_stacksize
     1      1
   
     >>> dis(simple_code(13,414))    # FAILURE EXPECTED IN PYTHON 2.3      >>> dis(simple_code(13,414))
      13           0 LOAD_CONST               0 (None)       13           0 LOAD_CONST               0 (None)
     414           3 RETURN_VALUE      414           3 RETURN_VALUE
   
Line 1792 
Line 2273 
     >>> simple_code(13,14,100).co_stacksize      >>> simple_code(13,14,100).co_stacksize
     100      100
   
     >>> dis(simple_code(13,572,120))    # FAILURE EXPECTED IN Python 2.3      >>> dis(simple_code(13,572,120))
      13           0 LOAD_CONST               0 (None)       13           0 LOAD_CONST               0 (None)
                   3 LOAD_CONST               0 (None)                    3 LOAD_CONST               0 (None)
     ...      ...
Line 1851 
Line 2332 
                   3 LOAD_ATTR                1 (bar)                    3 LOAD_ATTR                1 (bar)
                   6 DELETE_FAST              0 (baz)                    6 DELETE_FAST              0 (baz)
   
   Code iteration::
   
       >>> c.DUP_TOP()
       >>> c.return_(Code.POP_TOP)
       >>> list(c) == [
       ...     (0, op.LOAD_GLOBAL, 0),
       ...     (3, op.LOAD_ATTR, 1),
       ...     (6, op.DELETE_FAST, 0),
       ...     (9, op.DUP_TOP, None),
       ...     (10, op.POP_TOP, None),
       ...     (11, op.RETURN_VALUE, None)
       ... ]
       True
   
   Code patching::
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
       >>> c.DELETE_FAST('x')
       >>> c.RETURN_VALUE()
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               0 (x)
                     6 LOAD_FAST                0 (x)
                     9 DELETE_FAST              0 (x)
                    12 RETURN_VALUE
   
   
       >>> c.co_varnames
       ['x']
       >>> c.co_varnames.append('y')
   
       >>> c._patch(
       ...     {op.LOAD_FAST:  op.LOAD_FAST,
       ...      op.STORE_FAST: op.STORE_FAST,
       ...      op.DELETE_FAST: op.DELETE_FAST},
       ...     {0: 1}
       ... )
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               1 (y)
                     6 LOAD_FAST                1 (y)
                     9 DELETE_FAST              1 (y)
                    12 RETURN_VALUE
   
       >>> c._patch({op.RETURN_VALUE: op.POP_TOP})
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               1 (y)
                     6 LOAD_FAST                1 (y)
                     9 DELETE_FAST              1 (y)
                    12 POP_TOP
   
   Converting locals to free/cell vars::
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               0 (x)
                     6 LOAD_FAST                0 (x)
   
       >>> c.co_freevars = 'y', 'x'
       >>> c.co_cellvars = 'z',
   
       >>> c._locals_to_cells()
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              2 (x)
                     6 LOAD_DEREF               2 (x)
   
       >>> c.DELETE_FAST('x')
       >>> c._locals_to_cells()
       Traceback (most recent call last):
         ...
       AssertionError: Can't delete local 'x' used in nested scope
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
   
       >>> c.co_freevars
       ()
       >>> c.makefree(['x'])
       >>> c.co_freevars
       ('x',)
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (x)
                     6 LOAD_DEREF               0 (x)
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
       >>> c.makecells(['x'])
       >>> c.co_freevars
       ()
       >>> c.co_cellvars
       ('x',)
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (x)
                     6 LOAD_DEREF               0 (x)
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
       >>> c.makefree('x')
       >>> c.makecells(['y'])
       >>> c.co_freevars
       ('x',)
       >>> c.co_cellvars
       ('y',)
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              1 (x)
                     6 LOAD_DEREF               1 (x)
   
       >>> c = Code()
       >>> c.co_flags &= ~op.CO_OPTIMIZED
       >>> c.makecells(['q'])
       Traceback (most recent call last):
         ...
       AssertionError: Can't use cellvars in unoptimized scope
   
   
   
   Auto-free promotion with code parent:
   
       >>> p = Code()
       >>> c = Code()
       >>> c.LOAD_FAST('x')
       >>> dis(c.code(p))
         0           0 LOAD_DEREF               0 (x)
       >>> p.co_cellvars
       ('x',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,y,z=2: None)
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
   
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_FAST                2 (z)
       >>> p.co_cellvars
       ()
   
       >>> c.LOAD_FAST('q')
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_FAST                2 (z)
                     9 LOAD_DEREF               0 (q)
       >>> p.co_cellvars
       ('q',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,*y,**z: None)
       >>> c.LOAD_FAST('q')
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
       >>> dis(c.code(p))
         0           0 LOAD_DEREF               0 (q)
                     3 LOAD_FAST                0 (x)
                     6 LOAD_FAST                1 (y)
                     9 LOAD_FAST                2 (z)
       >>> p.co_cellvars
       ('q',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,*y: None)
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_DEREF               0 (z)
       >>> p.co_cellvars
       ('z',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,**y: None)
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_DEREF               0 (z)
       >>> p.co_cellvars
       ('z',)
   
   
 Stack tracking on jumps::  Stack tracking on jumps::
   
Line 1885 
Line 2574 
       ...        ...
     AssertionError: Stack level mismatch: actual=1 expected=0      AssertionError: Stack level mismatch: actual=1 expected=0
   
       >>> from peak.util.assembler import For
       >>> c = Code()
       >>> c(For((), Code.POP_TOP, Pass))
       >>> c.return_()
       >>> dis(c.code())
         0           0 BUILD_TUPLE              0
                     3 GET_ITER
               >>    4 FOR_ITER                 4 (to 11)
                     7 POP_TOP
                     8 JUMP_ABSOLUTE            4
               >>   11 LOAD_CONST               0 (None)
                    14 RETURN_VALUE
   
       >>> c.stack_history
       [0, 1, 1, 1, 1, 2, 2, 2, 1, None, None, 0, 1, 1, 1]
   
   
   Yield value::
   
       >>> import sys
       >>> from peak.util.assembler import CO_GENERATOR
       >>> c = Code()
       >>> c.co_flags & CO_GENERATOR
       0
       >>> c(42, Code.YIELD_VALUE)
       >>> c.stack_size == int(sys.version>='2.5')
       True
       >>> (c.co_flags & CO_GENERATOR) == CO_GENERATOR
       True
   
   
   
Line 2045 
Line 2762 
       ...        ...
     AssertionError: Stack underflow      AssertionError: Stack underflow
   
     >>> c.LOAD_CONST(1)      >>> c = Code()
     >>> c.LOAD_CONST(2) # simulate being a function      >>> c.LOAD_CONST(1) # closure
     >>> c.MAKE_CLOSURE(1, 0)      >>> if sys.version>='2.5': c.BUILD_TUPLE(1)
       >>> c.LOAD_CONST(2) # default
       >>> c.LOAD_CONST(3) # simulate being a function
       >>> c.MAKE_CLOSURE(1, 1)
     >>> c.stack_size      >>> c.stack_size
     1      1
   
     >>> c = Code()      >>> c = Code()
     >>> c.LOAD_CONST(1)      >>> c.LOAD_CONST(1)
     >>> c.LOAD_CONST(2)      >>> c.LOAD_CONST(2)
       >>> if sys.version>='2.5': c.BUILD_TUPLE(2)
     >>> c.LOAD_CONST(3) # simulate being a function      >>> c.LOAD_CONST(3) # simulate being a function
     >>> c.MAKE_CLOSURE(1, 1)      >>> c.MAKE_CLOSURE(0, 2)
     >>> c.stack_size      >>> c.stack_size
     1      1
   
   
   
 Labels and backpatching forward references::  Labels and backpatching forward references::
   
     >>> c = Code()      >>> c = Code()
Line 2140 
Line 2862 
       0           0 LOAD_CONST               1 ({'x': 1})        0           0 LOAD_CONST               1 ({'x': 1})
                   3 RETURN_VALUE                    3 RETURN_VALUE
   
   Try/Except stack level tracking::
   
       >>> def class_or_type_of(expr):
       ...     return Suite([expr, TryExcept(
       ...         Suite([Getattr(Code.DUP_TOP, '__class__'), Code.ROT_TWO]),
       ...         [(Const(AttributeError), Call(Const(type), (Code.ROT_TWO,)))]
       ...     )])
   
       >>> def type_or_class(x): pass
       >>> c = Code.from_function(type_or_class)
       >>> c.return_(class_or_type_of(Local('x')))
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 SETUP_EXCEPT             9 (to 15)
                     6 DUP_TOP
                     7 LOAD_ATTR                0 (__class__)
                    10 ROT_TWO
                    11 POP_BLOCK
                    12 JUMP_FORWARD            26 (to 41)
               >>   15 DUP_TOP
                    16 LOAD_CONST               1 (<...exceptions.AttributeError...>)
                    19 COMPARE_OP              10 (exception match)
                    22 JUMP_IF_FALSE           14 (to 39)
                    25 POP_TOP
                    26 POP_TOP
                    27 POP_TOP
                    28 POP_TOP
                    29 LOAD_CONST               2 (<type 'type'>)
                    32 ROT_TWO
                    33 CALL_FUNCTION            1
                    36 JUMP_FORWARD             2 (to 41)
               >>   39 POP_TOP
                    40 END_FINALLY
               >>   41 RETURN_VALUE
   
       >>> type_or_class.func_code = c.code()
       >>> type_or_class(23)
       <type 'int'>
   
   
   
   
   
 Demo: "Computed Goto"/"Switch Statement"  Demo: "Computed Goto"/"Switch Statement"
 ========================================  ========================================
Line 2150 
Line 2914 
     >>> from peak.util.assembler import LOAD_CONST, POP_BLOCK      >>> from peak.util.assembler import LOAD_CONST, POP_BLOCK
   
     >>> import sys      >>> import sys
     >>> WHY_CONTINUE = {'2.3':5, '2.4':32, '2.5':32}[sys.version[:3]]      >>> WHY_CONTINUE = {'2.3':5}.get(sys.version[:3], 32)
   
     >>> def Switch(expr, cases, default=Pass, code=None):      >>> def Switch(expr, cases, default=Pass, code=None):
     ...     if code is None:      ...     if code is None:
Line 2227 
Line 2991 
   
 * Exhaustive tests of all opcodes' stack history effects  * Exhaustive tests of all opcodes' stack history effects
   
 * YIELD_EXPR should set CO_GENERATOR; stack effects depend on Python version  * Test wide jumps and wide argument generation in general
   


Generate output suitable for use with a patch program
Legend:
Removed from v.2457  
changed lines
  Added in v.2620

cvs-admin@eby-sarna.com

Powered by ViewCVS 1.0-dev

ViewCVS and CVS Help