[Subversion] / BytecodeAssembler / peak / util / assembler.txt  

Diff of /BytecodeAssembler/peak/util/assembler.txt

Parent Directory | Revision Log

version 2187, Thu Jun 15 06:05:27 2006 UTC version 2745, Sat Apr 4 05:58:18 2015 UTC
Line 9 
Line 9 
 bytecode instead of on these mechanical issues.  bytecode instead of on these mechanical issues.
   
 In addition to a low-level opcode-oriented API for directly generating specific  In addition to a low-level opcode-oriented API for directly generating specific
 bytecodes, the module also offers an extensible mini-AST framework for  Python bytecodes, this module also offers an extensible mini-AST framework for
 generating code from high-level specifications.  This framework does most of  generating code from high-level specifications.  This framework does most of
 the work needed to transform tree-like structures into linear bytecode  the work needed to transform tree-like structures into linear bytecode
 instructions, and includes the ability to do compile-time constant folding.  instructions, and includes the ability to do compile-time constant folding.
   
   Please see the `BytecodeAssembler reference manual`_ for more details.
   
 .. contents:: Table of Contents  .. _BytecodeAssembler reference manual: http://peak.telecommunity.com/DevCenter/BytecodeAssembler#toc
   
   
   Changes since version 0.6:
   
   * Experimental Python 3 support, including emulation of restored
     ``BINARY_DIVIDE`` and ``UNARY_CONVERT`` functions.
   
   Changes since version 0.5.2:
   
   * Symbolic disassembly with full emulation of backward-compatible
     ``JUMP_IF_TRUE`` and ``JUMP_IF_FALSE`` opcodes on Python 2.7 -- tests now
     run clean on Python 2.7.
   
   * Support for backward emulation of Python 2.7's ``JUMP_IF_TRUE_OR_POP`` and
     ``JUMP_IF_FALSE_OR_POP`` instructions on earlier Python versions; these
     emulations are also used in BytecodeAssembler's internal code generation,
     for maximum performance on 2.7+ (with no change to performance on older
     versions).
   
   Changes since version 0.5.1:
   
   * Initial support for Python 2.7's new opcodes and semantics changes, mostly
     by emulating older versions' behavior with macros.  (0.5.2 is really just
     a quick-fix release to allow packages using BytecodeAssembler to run on 2.7
     without having to change any of their code generation; future releases will
     provide proper support for the new and changed opcodes, as well as a test
     suite that doesn't show spurious differences in the disassembly listings
     under Python 2.7.)
   
   Changes since version 0.5:
   
   * Fix incorrect stack size calculation for ``MAKE_CLOSURE`` on Python 2.5+
   
   Changes since version 0.3:
   
   * New node types:
   
     * ``For(iterable, assign, body)`` -- define a "for" loop over `iterable`
   
     * ``UnpackSequence(nodes)`` -- unpacks a sequence that's ``len(nodes)`` long,
       and then generates the given nodes.
   
     * ``LocalAssign(name)`` -- issues a ``STORE_FAST``, ``STORE_DEREF`` or
       ``STORE_LOCAL`` as appropriate for the given name.
   
     * ``Function(body, name='<lambda>', args=(), var=None, kw=None, defaults=())``
       -- creates a nested function from `body` and puts it on the stack.
   
     * ``If(cond, then_, else_=Pass)`` -- "if" statement analogue
   
     * ``ListComp(body)`` and ``LCAppend(value)`` -- implement list comprehensions
   
     * ``YieldStmt(value)`` -- generates a ``YIELD_VALUE`` (plus a ``POP_TOP`` in
       Python 2.5+)
   
   * ``Code`` objects are now iterable, yielding ``(offset, op, arg)`` triples,
     where `op` is numeric and `arg` is either numeric or ``None``.
   
   * ``Code`` objects' ``.code()`` method can now take a "parent" ``Code`` object,
     to link the child code's free variables to cell variables in the parent.
   
   * Added ``Code.from_spec()`` classmethod, that initializes a code object from a
     name and argument spec.
   
   * ``Code`` objects now have a ``.nested(name, args, var, kw)`` method, that
     creates a child code object with the same ``co_filename`` and the supplied
     name/arg spec.
   
   * Fixed incorrect stack tracking for the ``FOR_ITER`` and ``YIELD_VALUE``
     opcodes
   
   * Ensure that ``CO_GENERATOR`` flag is set if ``YIELD_VALUE`` opcode is used
   
   * Change tests so that Python 2.3's broken line number handling in ``dis.dis``
     and constant-folding optimizer don't generate spurious failures in this
     package's test suite.
   
   
   Changes since version 0.2:
   
   * Added ``Suite``, ``TryExcept``, and ``TryFinally`` node types
   
   * Added a ``Getattr`` node type that does static or dynamic attribute access
     and constant folding
   
   * Fixed ``code.from_function()`` not copying the ``co_filename`` attribute when
     ``copy_lineno`` was specified.
   
   * The ``repr()`` of AST nodes doesn't include a trailing comma for 1-argument
     node types any more.
   
   * Added a ``Pass`` symbol that generates no code, a ``Compare()`` node type
     that does n-way comparisons, and ``And()`` and ``Or()`` node types for doing
     logical operations.
   
   * The ``COMPARE_OP()`` method now accepts operator strings like ``"<="``,
     ``"not in"``, ``"exception match"``, and so on, as well as numeric opcodes.
     See the standard library's ``opcode`` module for a complete list of the
     strings accepted (in the ``cmp_op`` tuple).  ``"<>"`` is also accepted as an
     alias for ``"!="``.
   
   * Added code to verify that forward jump offsets don't exceed a 64KB span, and
     support absolute backward jumps to locations >64KB.
   
   Changes since version 0.1:
   
   * Constant handling has been fixed so that it doesn't confuse equal values of
     differing types (e.g. ``1.0`` and ``True``), or equal unhashable objects
     (e.g. two empty lists).
   
   * Removed ``nil``, ``ast_curry()`` and ``folding_curry()``, replacing them with
     the ``nodetype()`` decorator and ``fold_args()``; please see the docs for
     more details.
   
   * Added stack tracking across jumps, globally verifying stack level prediction
     consistency and automatically rejecting attempts to generate dead code.  It
     should now be virtually impossible to accidentally generate bytecode that can
     crash the interpreter.  (If you find a way, let me know!)
   
   Changes since version 0.0.1:
   
   * Added massive quantities of new documentation and examples
   
   * Full block, loop, and closure support
   
   * High-level functional code generation from trees, with smart labels and
     blocks, constant folding, extensibility, smart local variable names, etc.
   
   * The ``.label()`` method was renamed to ``.here()`` to distinguish it from
     the new smart ``Label`` objects.
   
   * Docs and tests were moved to README.txt instead of assembler.txt
   
   * Added a demo that implements a "switch"-like statement template that shows
     how to extend the code generation system and how to abuse ``END_FINALLY``
     to implement a "computed goto" in bytecode.
   
   * Various bug fixes
   
   There are a few features that aren't tested yet, and not all opcodes may be
   fully supported.  Also note the following limitations:
   
   * Jumps to as-yet-undefined labels cannot span a distance greater than 65,535
     bytes.
   
   * The ``dis()`` function in Python 2.3 has a bug that makes it show incorrect
     line numbers when the difference between two adjacent line numbers is
     greater than 255.  (To work around this, the test_suite uses a later version
     of ``dis()``, but do note that it may affect your own tests if you use
     ``dis()`` with Python 2.3 and use widely separated line numbers.)
   
   If you find any other issues, please let me know.
   
   Please also keep in mind that this is a work in progress, and the API may
   change if I come up with a better way to do something.
   
   Questions and discussion regarding this software should be directed to the
   `PEAK Mailing List <http://www.eby-sarna.com/mailman/listinfo/peak>`_.
   
   .. _toc:
   .. contents:: **Table of Contents**
   
   
 --------------  --------------
Line 53 
Line 215 
 that maps each ``set_lineno()`` to the corresponding position in the bytecode.  that maps each ``set_lineno()`` to the corresponding position in the bytecode.
   
 And of course, the resulting code objects can be run with ``eval()`` or  And of course, the resulting code objects can be run with ``eval()`` or
 ``exec``, or used with ``new.function`` to create a function::  ``exec``, or used with ``new.function``/``types.FunctionType`` to create a
   function::
   
     >>> eval(c.code())      >>> eval(c.code())
     42      42
   
     >>> exec c.code()   # exec discards the return value, so no output here      >>> exec(c.code())   # exec discards the return value, so no output here
   
     >>> import new      >>> try:
     >>> f = new.function(c.code(), globals())      ...     from new import function
       ... except ImportError:  # Python 3 workarounds
       ...     from types import FunctionType as function
       ...     long = int
       ...     unicode = str
   
       >>> f = function(c.code(), globals())
     >>> f()      >>> f()
     42      42
   
   Finally, code objects are also iterable, yielding ``(offset, opcode, arg)``
   tuples, where `arg` is ``None`` for opcodes with no arguments, and an integer
   otherwise::
   
       >>> import peak.util.assembler as op
       >>> list(c) == [
       ...     (0, op.LOAD_CONST, 1),
       ...     (3, op.RETURN_VALUE, None)
       ... ]
       True
   
   This can be useful for testing or otherwise inspecting code you've generated.
   
   
   Symbolic Disassembler
   =====================
   
   Python's built-in disassembler can be verbose and hard to read when inspecting
   complex generated code -- usually you don't care about bytecode offsets or
   line numbers as much as you care about labels, for example.
   
   So, BytecodeAssembler provides its own, simplified disassembler, which we'll
   be using for more complex listings in this manual::
   
       >>> from peak.util.assembler import dump
   
   Some sample output, that also showcases some of BytecodeAssembler's
   `High-Level Code Generation`_ features::
   
       >>> c = Code()
       >>> from peak.util.assembler import Compare, Local
       >>> c.return_(Compare(Local('a'), [('<', Local('b')), ('<', Local('c'))]))
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       LOAD_FAST                1 (b)
                       DUP_TOP
                       ROT_THREE
                       COMPARE_OP               0 (<)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_FAST                2 (c)
                       COMPARE_OP               0 (<)
                       JUMP_FORWARD            L2
               L1:     ROT_TWO
                       POP_TOP
               L2:     RETURN_VALUE
   
   As you can see, the line numbers and bytecode offsets have been dropped,
   making it esier to see where the jumps go.  (This also makes doctests more
   robust against Python version changes, as ``dump()`` has some extra code to
   make conditional jumps appear consistent across the major changes that were
   made to conditional jump instructions between Python 2.6 and 2.7.)
   
 Opcodes, Jumps, and Labels  
 ==========================  Opcodes and Arguments
   =====================
   
 ``Code`` objects have methods for all of CPython's symbolic opcodes.  Generally  ``Code`` objects have methods for all of CPython's symbolic opcodes.  Generally
 speaking, each method accepts either zero or one argument, depending on whether  speaking, each method accepts either zero or one argument, depending on whether
 the opcode accepts an argument.  the opcode accepts an argument.
   
 But while Python bytecode always encodes arguments as 16 or 32-bit integers,  Python bytecode always encodes opcode arguments as 16 or 32-bit integers, but
 you will generally pass actual names or values to ``Code`` methods, and the  sometimes these numbers are actually offsets into a sequence of names or
 ``Code`` object will take care of maintaining the necessary lookup tables and  constants.  ``Code`` objects take care of maintaining these sequences for you,
 translation to integer bytecode arguments.  allowing you to just pass in a name or value directly, instead of needing to
   keep track of what numbers map to what names or values.
   
   The name or value you pass in to such methods will be looked up in the
   appropriate table (see `Code Attributes`_ below for a list), and if not found,
   it will be added::
   
       >>> c = Code()
       >>> c.co_consts, c.co_varnames, c.co_names
       ([None], [], [])
   
       >>> c.LOAD_CONST(42)
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_GLOBAL('y')
       >>> c.LOAD_NAME('z')
   
       >>> c.co_consts, c.co_varnames, c.co_names
       ([None, 42], ['x'], ['y', 'z'])
   
   The one exception to this automatic addition feature is that opcodes referring
   to "free" or "cell" variables will not automatically add new names, because the
   names need to be defined first::
   
       >>> c.LOAD_DEREF('q')
       Traceback (most recent call last):
         ...
       NameError: ('Undefined free or cell var', 'q')
   
   In general, opcode methods take the same arguments as their Python bytecode
   equivalent.  But there are a few special cases.
   
 Labels and backpatching forward references::  
   Call Arguments
   --------------
   
   First, the ``CALL_FUNCTION()``, ``CALL_FUNCTION_VAR()``, ``CALL_FUNCTION_KW()``,
   and ``CALL_FUNCTION_VAR_KW()`` methods all take *two* arguments, both of which
   are optional.  (The ``_VAR`` and ``_KW`` suffixes in the method names indicate
   whether or not a ``*args`` or ``**kwargs`` or both are also present on the
   stack, in addition to the explicit positional and keyword arguments.)
   
   The first argument of each of these methods, is the number of positional
   arguments on the stack, and the second is the number of keyword/value pairs on
   the stack (to be used as keyword arguments).  Both default to zero if not
   supplied::
   
     >>> c = Code()      >>> c = Code()
     >>> ref = c.JUMP_ABSOLUTE()     # jump w/unspecified target      >>> c.LOAD_CONST(type)
     >>> c.LOAD_CONST(1)      >>> c.LOAD_CONST(27)
     >>> ref()                       # resolve the forward reference      >>> c.CALL_FUNCTION(1)      # 1 positional, no keywords
     >>> c.RETURN_VALUE()      >>> c.RETURN_VALUE()
     >>> dis(c.code())  
       0           0 JUMP_ABSOLUTE            6  
                   3 LOAD_CONST               1 (1)  
             >>    6 RETURN_VALUE  
   
       >>> eval(c.code())          # computes type(27)
       <... 'int'>
   
       >>> c = Code()
       >>> c.LOAD_CONST(dict)
       >>> c.LOAD_CONST('x')
       >>> c.LOAD_CONST(42)
       >>> c.CALL_FUNCTION(0,1)    # no positional, 1 keyword
       >>> c.RETURN_VALUE()
   
       >>> eval(c.code())          # computes dict(x=42)
       {'x': 42}
   
   
   Jump Targets
   ------------
   
   Opcodes that perform jumps or refer to addresses can be invoked in one of
   two ways.  First, if you are jumping backwards (e.g. with ``JUMP_ABSOLUTE`` or
   ``CONTINUE_LOOP``), you can obtain the target bytecode offset using the
   ``.here()`` method, and then later pass that offset into the appropriate
   method::
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> where = c.here()         # get a location near the start of the code
       >>> c.DUP_TOP()
       >>> c.POP_TOP()
       >>> c.JUMP_ABSOLUTE(where)   # now jump back to it
   
       >>> dump(c.code())
                       LOAD_CONST               1 (42)
               L1:     DUP_TOP
                       POP_TOP
                       JUMP_ABSOLUTE            L1
   
   But if you are jumping *forward*, you will need to call the jump or setup
   method without any arguments.  The return value will be a "forward reference"
   object that can be called later to indicate that the desired jump target has
   been reached::
   
       >>> c = Code()
       >>> c.LOAD_CONST(99)
       >>> forward = c.JUMP_IF_TRUE() # create a jump and a forward reference
   
       >>> c.LOAD_CONST(42)            # this is what we want to skip over
       >>> c.POP_TOP()
   
       >>> forward()   # calling the reference changes the jump to point here
       >>> c.LOAD_CONST(23)
       >>> c.RETURN_VALUE()
   
       >>> dump(c.code())
                       LOAD_CONST               1 (99)
                       JUMP_IF_TRUE             L1
                       LOAD_CONST               2 (42)
                       POP_TOP
               L1:     LOAD_CONST               3 (23)
                       RETURN_VALUE
   
       >>> eval(c.code())
       23
   
   
   Other Special Opcodes
   ---------------------
   
   The ``MAKE_CLOSURE`` method takes an argument for the number of default values
   on the stack, just like the "real" Python opcode.  However, it also has an
   an additional required argument: the number of closure cells on the stack.
   The Python interpreter normally gets this number from a code object that's on
   the stack, but ``Code`` objects need this value in order to update the
   current stack size, for purposes of computing the required total stack size::
   
       >>> def x(a,b):     # a simple closure example
       ...     def y():
       ...         return a+b
       ...     return y
   
       >>> c = Code()
       >>> c.co_cellvars = ('a','b')
   
       >>> import sys
       >>> c.LOAD_CLOSURE('a')
       >>> c.LOAD_CLOSURE('b')
       >>> if sys.version>='2.5':
       ...     c.BUILD_TUPLE(2) # In Python 2.5+, free vars must be in a tuple
       >>> c.LOAD_CONST(None)   # in real code, this'd be a Python code constant
       >>> c.MAKE_CLOSURE(0,2)  # no defaults, 2 free vars in the new function
   
       >>> c.stack_size         # This will be 1, no matter what Python version
       1
   
   The ``COMPARE_OP`` method takes an argument which can be a valid comparison
   integer constant, or a string containing a Python operator, e.g.::
   
     >>> c = Code()      >>> c = Code()
     >>> lbl = c.label()     # create a label at this point in the code  
     >>> c.LOAD_CONST(1)      >>> c.LOAD_CONST(1)
     >>> ref = c.JUMP_ABSOLUTE(lbl)  # and jump to it      >>> c.LOAD_CONST(2)
       >>> c.COMPARE_OP('not in')
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (2)
                     6 COMPARE_OP               7 (not in)
   
   The full list of valid operator strings can be found in the standard library's
   ``opcode`` module.  ``"<>"`` is also accepted as an alias for ``"!="``::
   
       >>> c.LOAD_CONST(3)
       >>> c.COMPARE_OP('<>')
     >>> dis(c.code())      >>> dis(c.code())
       0     >>    0 LOAD_CONST               1 (1)        0           0 LOAD_CONST               1 (1)
                   3 JUMP_ABSOLUTE            0                    3 LOAD_CONST               2 (2)
                     6 COMPARE_OP               7 (not in)
                     9 LOAD_CONST               3 (3)
                    12 COMPARE_OP               3 (!=)
   
   
   High-Level Code Generation
   ==========================
   
   Typical real-life code generation use cases call for transforming tree-like
   data structures into bytecode, rather than linearly outputting instructions.
   ``Code`` objects provide for this using a simple but high-level transformation
   API.
   
 Code Generation API  ``Code`` objects may be *called*, passing in one or more arguments.  Each
 ===================  argument will have bytecode generated for it, according to its type:
   
   
   Simple Constants
   ----------------
   
   If an argument is an integer, long, float, complex, string, unicode, boolean,
   ``None``, or Python code object, it is treated as though it was passed to
   the ``LOAD_CONST`` method directly::
   
 Code generation from tuples, lists, dicts, and local variable names::  
   
     >>> from peak.util.assembler import Const, Call, Global, Local  
   
     >>> c = Code()      >>> c = Code()
     >>> c( [Local('x'), (Local('y'),Local('z'))] )  # push a value on the stack      >>> c(1, long(2), 3.0, 4j+5, "6", unicode("7"), False, None, c.code())
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_FAST                0 (x)        0           0 LOAD_CONST               1 (1)
                   3 LOAD_FAST                1 (y)                    3 LOAD_CONST               2 (2...)
                   6 LOAD_FAST                2 (z)                    6 LOAD_CONST               3 (3.0)
                   9 BUILD_TUPLE              2                    9 LOAD_CONST               4 ((5+4j))
                  12 BUILD_LIST               2                   12 LOAD_CONST               5 ('6')
                    15 LOAD_CONST               6 (...'7')
                    18 LOAD_CONST               7 (False)
                    21 LOAD_CONST               0 (None)
                    24 LOAD_CONST               8 (<code object <lambda>...>)
   
   Note that although some values of different types may compare equal to each
   other, ``Code`` objects will not substitute a value of a different type than
   the one you requested::
   
       >>> c = Code()
       >>> c(1, True, 1.0)     # equal, but different types
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (True)
                     6 LOAD_CONST               3 (1.0)
   
 And with constants, dictionaries, globals, and calls::  Simple Containers
   -----------------
   
   If an argument is a tuple, list, or dictionary, code is generated to
   reconstruct the given data, recursively::
   
     >>> c = Code()      >>> c = Code()
     >>> c.return_( [Global('type'), Const(27)] )     # push and RETURN_VALUE      >>> c({1:(2,"3"), 4:[5,6]})
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_GLOBAL              0 (type)        0           0 BUILD_MAP                0
                   3 LOAD_CONST               1 (27)                    3 DUP_TOP
                   6 BUILD_LIST               2                    4 LOAD_CONST               1 (1)
                   9 RETURN_VALUE                    7 LOAD_CONST               2 (2)
                    10 LOAD_CONST               3 ('3')
                    13 BUILD_TUPLE              2
                    16 ROT_THREE
                    17 STORE_SUBSCR
                    18 DUP_TOP
                    19 LOAD_CONST               4 (4)
                    22 LOAD_CONST               5 (5)
                    25 LOAD_CONST               6 (6)
                    28 BUILD_LIST               2
                    31 ROT_THREE
                    32 STORE_SUBSCR
   
   
   Arbitrary Constants
   -------------------
   
   The ``Const`` wrapper allows you to treat any object as a literal constant,
   regardless of its type::
   
       >>> from peak.util.assembler import Const
   
       >>> c = Code()
       >>> c( Const( (1,2,3) ) )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 ((1, 2, 3))
   
   As you can see, the above creates code that references an actual tuple as
   a constant, rather than generating code to recreate the tuple using a series of
   ``LOAD_CONST`` operations followed by a ``BUILD_TUPLE``.
   
   If the value wrapped in a ``Const`` is not hashable, it is compared by identity
   rather than value.  This prevents equal mutable values from being reused by
   accident, e.g. if you plan to mutate the "constant" values later::
   
       >>> c = Code()
       >>> c(Const([]), Const([]))     # equal, but not the same object!
       >>> dis(c.code())
         0           0 LOAD_CONST               1 ([])
                     3 LOAD_CONST               2 ([])
   
   Thus, although ``Const`` objects hash and compare based on equality for
   hashable types::
   
       >>> hash(Const(3)) == hash(3)
       True
       >>> Const(3)==Const(3)
       True
   
   They hash and compare based on object identity for non-hashable types::
   
       >>> c = Const([])
       >>> hash(c) == hash(id(c.value))
       True
       >>> c == Const(c.value)     # compares equal if same object
       True
       >>> c == Const([])          # but is not equal to a merely equal object
       False
   
   
   ``Suite`` and ``Pass``
   ----------------------
   
   On occasion, it's helpful to be able to group a sequence of opcodes,
   expressions, or statements together, to be passed as an argument to other node
   types.  The ``Suite`` node type accomplishes this::
   
       >>> from peak.util.assembler import Suite, Pass
   
       >>> c = Code()
       >>> c.return_(Suite([Const(42), Code.DUP_TOP, Code.POP_TOP]))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 DUP_TOP
                     4 POP_TOP
                     5 RETURN_VALUE
   
   And ``Pass`` is a shortcut for an empty ``Suite``, that generates nothing::
   
       >>> Suite([])
       Pass
   
       >>> c = Code()
       >>> c(Pass)
       >>> c.return_(None)
       >>> dis(c.code())
         0           0 LOAD_CONST               0 (None)
                     3 RETURN_VALUE
   
   
   Local and Global Names
   ----------------------
   
   The ``Local`` and ``Global`` wrappers take a name, and load either a local or
   global variable, respectively::
   
       >>> from peak.util.assembler import Global, Local
   
     >>> c = Code()      >>> c = Code()
     >>> c( {Const('x'): Const(123)} )      >>> c( Local('x'), Global('y') )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_GLOBAL              0 (y)
   
   As with simple constants and ``Const`` wrappers, these objects can be used to
   construct more complex expressions, like ``{a:(b,c)}``::
   
       >>> c = Code()
       >>> c( {Local('a'): (Local('b'), Local('c'))} )
     >>> dis(c.code())      >>> dis(c.code())
       0           0 BUILD_MAP                0        0           0 BUILD_MAP                0
                   3 DUP_TOP                    3 DUP_TOP
                   4 LOAD_CONST               1 ('x')                    4 LOAD_FAST                0 (a)
                   7 LOAD_CONST               2 (123)                    7 LOAD_FAST                1 (b)
                  10 ROT_THREE                   10 LOAD_FAST                2 (c)
                  11 STORE_SUBSCR                   13 BUILD_TUPLE              2
                    16 ROT_THREE
                    17 STORE_SUBSCR
   
   The ``LocalAssign`` node type takes a name, and stores a value in a local
   variable::
   
       >>> from peak.util.assembler import LocalAssign
     >>> c = Code()      >>> c = Code()
     >>> c(Call(Global('type'), (Const(1),)))      >>> c(42, LocalAssign('x'))
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_GLOBAL              0 (type)        0           0 LOAD_CONST               1 (42)
                   3 LOAD_CONST               1 (1)                    3 STORE_FAST               0 (x)
                   6 CALL_FUNCTION            1  
   If the code object is not using "fast locals" (i.e. ``CO_OPTIMIZED`` isn't
   set), local variables will be referenced using ``LOAD_NAME`` and ``STORE_NAME``
   instead of ``LOAD_FAST`` and ``STORE_FAST``, and if the referenced local name
   is a "cell" or "free" variable, ``LOAD_DEREF`` and ``STORE_DEREF`` are used
   instead::
   
       >>> from peak.util.assembler import CO_OPTIMIZED
     >>> c = Code()      >>> c = Code()
     >>> c(Call(Global('getattr'), (Const(1), Const('__class__'))))      >>> c.co_flags &= ~CO_OPTIMIZED
       >>> c.co_cellvars = ('y',)
       >>> c.co_freevars = ('z',)
       >>> c( Local('x'), Local('y'), Local('z') )
       >>> c( LocalAssign('x'), LocalAssign('y'), LocalAssign('z') )
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_GLOBAL              0 (getattr)        0           0 LOAD_NAME                0 (x)
                   3 LOAD_CONST               1 (1)                    3 LOAD_DEREF               0 (y)
                   6 LOAD_CONST               2 ('__class__')                    6 LOAD_DEREF               1 (z)
                   9 CALL_FUNCTION            2                    9 STORE_NAME               0 (x)
                    12 STORE_DEREF              0 (y)
                    15 STORE_DEREF              1 (z)
   
 ``Call`` objects take 1-4 arguments: the expression to be called, a sequence  
 of positional arguments, a sequence of keyword/value pairs for explicit keyword  Obtaining Attributes
 arguments, an "*" argument, and a "**" argument.  To omit any of the optional  --------------------
 arguments, just pass in an empty sequence in its place::  
   The ``Getattr`` node type takes an expression and an attribute name.  The
   attribute name can be a constant string, in which case a ``LOAD_ATTR`` opcode
   is used, and constant folding is done if possible::
   
       >>> from peak.util.assembler import Getattr
   
     >>> c = Code()      >>> c = Code()
     >>> c.return_(      >>> c(Getattr(Local('x'), '__class__'))
     ...     Call(Global('foo'), [Local('q')], [('x',Const(1))],  
     ...          Local('starargs'), Local('kwargs'))  
     ... )  
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_GLOBAL              0 (foo)        0           0 LOAD_FAST                0 (x)
                   3 LOAD_FAST                0 (q)                    3 LOAD_ATTR                0 (__class__)
                   6 LOAD_CONST               1 ('x')  
                   9 LOAD_CONST               2 (1)  
                  12 LOAD_FAST                1 (starargs)      >>> Getattr(Const(object), '__class__') # const expression, const result
                  15 LOAD_FAST                2 (kwargs)      Const(<... 'type'>)
                  18 CALL_FUNCTION_VAR_KW   257  
                  21 RETURN_VALUE  Or the attribute name can be an expression, in which case a ``getattr()`` call
   is compiled instead::
 Code generation is extensible: any 1-argument callables passed in will  
 be passed the code object during generation.  (The return value, if any, is  
 ignored.)  You can even use ``Code`` methods, if they don't have any required  
 arguments::  
   
     >>> c = Code()      >>> c = Code()
     >>> c.LOAD_GLOBAL('foo')      >>> c(Getattr(Local('x'), Local('y')))
     >>> c(Call(Code.DUP_TOP, ()))  
     >>> dis(c.code())      >>> dis(c.code())
       0           0 LOAD_GLOBAL              0 (foo)        0           0 LOAD_CONST               1 (<built-in function getattr>)
                   3 DUP_TOP                    3 LOAD_FAST                0 (x)
                   4 CALL_FUNCTION            0                    6 LOAD_FAST                1 (y)
                     9 CALL_FUNCTION            2
   
 This basically means you can create a simple AST of callable objects to drive  
 code generation, with a lot of the grunt work automatically handled for you.  
   
   Calling Functions and Methods
   -----------------------------
   
 Setting the Code's Calling Signature      >>> from peak.util.assembler import Call
 ====================================  
   
 The simplest way to set up the calling signature for a ``Code`` instance is  The ``Call`` wrapper takes 1-4 arguments: the expression to be called, a
 to clone an existing function or code object's signature, using the  sequence of positional arguments, a sequence of keyword/value pairs for
 ``Code.from_function()`` or ``Code.from_code()`` classmethods.  These methods  explicit keyword arguments, an "*" argument, and a "**" argument.  To omit any
 create a new code object whose calling signature (number and names of  of the optional arguments, just pass in an empty sequence in its place::
 arguments) matches that of the original function or code objects::  
   
     >>> def f1(a,b,*c,**d):      >>> c = Code()
     ...     pass      >>> c( Call(Global('type'), [Const(27)]) )
   
     >>> c1 = Code.from_function(f1)      >>> dis(c.code())   # type(27)
     >>> c1.co_argcount        0           0 LOAD_GLOBAL              0 (type)
     2                    3 LOAD_CONST               1 (27)
     >>> c1.co_varnames                    6 CALL_FUNCTION            1
     ['a', 'b', 'c', 'd']  
   
     >>> import inspect      >>> c = Code()
     >>> inspect.getargspec(f1)      >>> c(Call(Global('dict'), (), [('x', 42)]))
     (['a', 'b'], 'c', 'd', None)  
   
     >>> f2 = new.function(c1.code(), globals())      >>> dis(c.code())   # dict(x=42)
     >>> inspect.getargspec(f2)        0           0 LOAD_GLOBAL              0 (dict)
     (['a', 'b'], 'c', 'd', None)                    3 LOAD_CONST               1 ('x')
                     6 LOAD_CONST               2 (42)
                     9 CALL_FUNCTION            256
   
 Note that these constructors do not copy any actual *code* from the code      >>> c = Code()
 or function objects.  They simply copy the signature, and, if you set the      >>> c(Call(Global('foo'), (), (), Local('args'), Local('kw')))
 ``copy_lineno`` keyword argument to a true value, they will also set the  
 created code object's ``co_firstlineno`` to match that of the original code or  
 function object::  
   
     >>> c1 = Code.from_function(f1, copy_lineno=True)      >>> dis(c.code())   # foo(*args, **kw)
     >>> c1.co_firstlineno        0           0 LOAD_GLOBAL              0 (foo)
     1                    3 LOAD_FAST                0 (args)
                     6 LOAD_FAST                1 (kw)
                     9 CALL_FUNCTION_VAR_KW     0
   
 If you create a ``Code`` instance from a function that has nested positional  
 arguments, the returned code object will include a prologue to unpack the  
 arguments properly::  
   
     >>> def f3(a, (b,c), (d,(e,f))):  Returning Values
     ...     pass  ----------------
   
     >>> f4 = new.function(Code.from_function(f3).code(), globals())  The ``Return(target)`` wrapper generates code for its target, followed by
     >>> dis(f4)  a ``RETURN_VALUE`` opcode::
       0           0 LOAD_FAST                1 (.1)  
                   3 UNPACK_SEQUENCE          2      >>> from peak.util.assembler import Return
                   6 STORE_FAST               3 (b)  
                   9 STORE_FAST               4 (c)      >>> c = Code()
                  12 LOAD_FAST                2 (.2)      >>> c( Return(1) )
                  15 UNPACK_SEQUENCE          2      >>> dis(c.code())
                  18 STORE_FAST               5 (d)        0           0 LOAD_CONST               1 (1)
                  21 UNPACK_SEQUENCE          2                    3 RETURN_VALUE
                  24 STORE_FAST               6 (e)  
                  27 STORE_FAST               7 (f)  
   ``Code`` objects also have a ``return_()`` method that provides a more compact
   spelling of the same thing::
   
       >>> c = Code()
       >>> c.return_((1,2))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (2)
                     6 BUILD_TUPLE              2
                     9 RETURN_VALUE
   
   Both ``Return`` and ``return_()`` can be used with no argument, in which case
   ``None`` is returned::
   
       >>> c = Code()
       >>> c.return_()
       >>> dis(c.code())
         0           0 LOAD_CONST               0 (None)
                     3 RETURN_VALUE
   
       >>> c = Code()
       >>> c( Return() )
       >>> dis(c.code())
         0           0 LOAD_CONST               0 (None)
                     3 RETURN_VALUE
   
   
   ``If`` Conditions
   -----------------
   
   The ``If()`` node type generates conditional code, roughly equivalent to a
   Python if/else statement::
   
       >>> from peak.util.assembler import If
       >>> c = Code()
       >>> c( If(Local('a'), Return(42), Return(55)) )
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       JUMP_IF_FALSE            L1
                       POP_TOP
                       LOAD_CONST               1 (42)
                       RETURN_VALUE
               L1:     POP_TOP
                       LOAD_CONST               2 (55)
                       RETURN_VALUE
   
   However, it can also be used like a Python 2.5+ conditional expression
   (regardless of the targeted Python version)::
   
       >>> c = Code()
       >>> c( Return(If(Local('a'), 42, 55)) )
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       JUMP_IF_FALSE            L1
                       POP_TOP
                       LOAD_CONST               1 (42)
                       JUMP_FORWARD             L2
               L1:     POP_TOP
                       LOAD_CONST               2 (55)
               L2:     RETURN_VALUE
   
   
   Note that ``If()`` does *not* do constant-folding on its condition; even if the
   condition is a constant, it will be tested at runtime.  This avoids issues with
   using mutable constants, e.g.::
   
       >>> c = Code()
       >>> c(If(Const([]), 42, 55))
       >>> dump(c.code())
                       LOAD_CONST               1 ([])
                       JUMP_IF_FALSE            L1
                       POP_TOP
                       LOAD_CONST               2 (42)
                       JUMP_FORWARD             L2
               L1:     POP_TOP
                       LOAD_CONST               3 (55)
   
   
   Labels and Jump Targets
   -----------------------
   
   The forward reference callbacks returned by jump operations are also usable
   as code generation values, indicating that the jump should go to the
   current location.  For example::
   
       >>> c = Code()
       >>> c.LOAD_CONST(99)
       >>> forward = c.JUMP_IF_FALSE()
       >>> c( 1, Code.POP_TOP, forward, Return(3) )
       >>> dump(c.code())
                       LOAD_CONST               1 (99)
                       JUMP_IF_FALSE            L1
                       LOAD_CONST               2 (1)
                       POP_TOP
               L1:     LOAD_CONST               3 (3)
                       RETURN_VALUE
   
   However, there's an easier way to do the same thing, using ``Label`` objects::
   
       >>> from peak.util.assembler import Label
       >>> c = Code()
       >>> skip = Label()
   
       >>> c(99, skip.JUMP_IF_FALSE, 1, Code.POP_TOP, skip, Return(3))
       >>> dump(c.code())
                       LOAD_CONST               1 (99)
                       JUMP_IF_FALSE            L1
                       LOAD_CONST               2 (1)
                       POP_TOP
               L1:     LOAD_CONST               3 (3)
                       RETURN_VALUE
   
   This approach has the advantage of being easy to use in complex trees.
   ``Label`` objects have attributes corresponding to every opcode that uses a
   bytecode address argument.  Generating code for these attributes emits the
   the corresponding opcode, and generating code for the label itself defines
   where the previous opcodes will jump to.  Labels can have multiple jumps
   targeting them, either before or after they are defined.  But they can't be
   defined more than once::
   
       >>> c(skip)
       Traceback (most recent call last):
         ...
       AssertionError: Label previously defined
   
   
   More Conditional Jump Instructions
   ----------------------------------
   
   In Python 2.7, the traditional ``JUMP_IF_TRUE`` and ``JUMP_IF_FALSE``
   instructions were replaced with four new instructions that either conditionally
   or unconditionally pop the value being tested.  This was done to improve
   performance, since virtually all conditional jumps in Python code pop the
   value on one branch or the other.
   
   To provide better cross-version compatibility, BytecodeAssembler emulates the
   old instructions on Python 2.7 by emitting a ``DUP_TOP`` followed by a
   ``POP_JUMP_IF_FALSE`` or ``POP_JUMP_IF_TRUE`` instruction.
   
   However, since this decreases performance, BytecodeAssembler *also* emulates
   Python 2.7's ``JUMP_IF_FALSE_OR_POP`` and ``JUMP_IF_FALSE_OR_TRUE`` opcodes
   on *older* Pythons::
   
       >>> c = Code()
       >>> l1, l2 = Label(), Label()
       >>> c(Local('a'), l1.JUMP_IF_FALSE_OR_POP, Return(27), l1)
       >>> c(l2.JUMP_IF_TRUE_OR_POP, Return(42), l2, Code.RETURN_VALUE)
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_CONST               1 (27)
                       RETURN_VALUE
               L1:     JUMP_IF_TRUE            L2
                       POP_TOP
                       LOAD_CONST               2 (42)
                       RETURN_VALUE
               L2:     RETURN_VALUE
   
   This means that you can immediately begin using the "or-pop" variations, in
   place of a jump followed by a pop, and BytecodeAssembler will use the faster
   single instruction automatically on Python 2.7+.
   
   BytecodeAssembler *also* supports using Python 2.7's conditional jumps
   that do unconditional pops, but currently cannot emulate them on older Python
   versions, so at the moment you should use them only when your code requires
   Python 2.7.
   
   (Note: for ease in doctesting across Python versions, the ``dump()`` function
   *always* shows the code as if it were generated for Python 2.6 or lower, so
   if you need to check the *actual* bytecodes generated, you must use Python's
   ``dis.dis()`` function instead!)
   
   
   N-Way Comparisons
   -----------------
   
   You can generate N-way comparisons using the ``Compare()`` node type::
   
       >>> from peak.util.assembler import Compare
   
       >>> c = Code()
       >>> c(Compare(Local('a'), [('<', Local('b'))]))
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (a)
                     3 LOAD_FAST                1 (b)
                     6 COMPARE_OP               0 (<)
   
   3-way comparisons generate code that's a bit more complex.  Here's a three-way
   comparison (``a<b<c``)::
   
       >>> c = Code()
       >>> c.return_(Compare(Local('a'), [('<', Local('b')), ('<', Local('c'))]))
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       LOAD_FAST                1 (b)
                       DUP_TOP
                       ROT_THREE
                       COMPARE_OP               0 (<)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_FAST                2 (c)
                       COMPARE_OP               0 (<)
                       JUMP_FORWARD            L2
               L1:     ROT_TWO
                       POP_TOP
               L2:     RETURN_VALUE
   
   And a four-way (``a<b>c!=d``)::
   
       >>> c = Code()
       >>> c.return_(
       ...     Compare( Local('a'), [
       ...         ('<', Local('b')), ('>', Local('c')), ('!=', Local('d'))
       ...     ])
       ... )
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       LOAD_FAST                1 (b)
                       DUP_TOP
                       ROT_THREE
                       COMPARE_OP               0 (<)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_FAST                2 (c)
                       DUP_TOP
                       ROT_THREE
                       COMPARE_OP               4 (>)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_FAST                3 (d)
                       COMPARE_OP               3 (!=)
                       JUMP_FORWARD            L2
               L1:     ROT_TWO
                       POP_TOP
               L2:     RETURN_VALUE
   
   
   Sequence Unpacking
   ------------------
   
   The ``UnpackSequence`` node type takes a sequence of code generation targets,
   and generates an ``UNPACK_SEQUENCE`` of the correct length, followed by the
   targets::
   
       >>> from peak.util.assembler import UnpackSequence
       >>> c = Code()
       >>> c((1,2), UnpackSequence([LocalAssign('x'), LocalAssign('y')]))
       >>> dis(c.code())   # x, y = 1, 2
         0           0 LOAD_CONST               1 (1)
                     3 LOAD_CONST               2 (2)
                     6 BUILD_TUPLE              2
                     9 UNPACK_SEQUENCE          2
                    12 STORE_FAST               0 (x)
                    15 STORE_FAST               1 (y)
   
   
   Yield Statements
   ----------------
   
   The ``YieldStmt`` node type generates the necessary opcode(s) for a ``yield``
   statement, based on the target Python version.  (In Python 2.5+, a ``POP_TOP``
   must be generated after a ``YIELD_VALUE`` in order to create a yield statement,
   as opposed to a yield expression.)  It also sets the code flags needed to make
   the resulting code object a generator::
   
       >>> from peak.util.assembler import YieldStmt
       >>> c = Code()
       >>> c(YieldStmt(1), YieldStmt(2), Return(None))
       >>> list(eval(c.code()))
       [1, 2]
   
   
   
   Constant Detection and Folding
   ==============================
   
   The ``const_value()`` function can be used to check if an expression tree has
   a constant value, and to obtain that value.  Simple constants are returned
   as-is::
   
       >>> from peak.util.assembler import const_value
   
       >>> simple_values = [1, long(2), 3.0, 4j+5, "6", unicode("7"), False, None, c.code()]
   
       >>> list(map(const_value, simple_values))
       [1, 2..., 3.0, (5+4j), '6', ...'7', False, None, <code object <lambda>...>]
   
   Values wrapped in a ``Const()`` are also returned as-is::
   
       >>> list(map(const_value, map(Const, simple_values)))
       [1, 2..., 3.0, (5+4j), '6', ...'7', False, None, <code object <lambda>...>]
   
   But no other node types produce constant values; instead, ``NotAConstant`` is
   raised::
   
       >>> const_value(Local('x'))
       Traceback (most recent call last):
         ...
       NotAConstant: Local('x')
   
   Tuples of constants are recursively replaced by constant tuples::
   
       >>> const_value( (1,2) )
       (1, 2)
   
       >>> const_value( (1, (2, Const(3))) )
       (1, (2, 3))
   
   But any non-constant values anywhere in the structure cause an error::
   
       >>> const_value( (1,Global('y')) )
       Traceback (most recent call last):
         ...
       NotAConstant: Global('y')
   
   As do any types not previously described here::
   
       >>> const_value([1,2])
       Traceback (most recent call last):
         ...
       NotAConstant: [1, 2]
   
   Unless of course they're wrapped with ``Const``::
   
       >>> const_value(Const([1,2]))
       [1, 2]
   
   
   Folding Function Calls
   ----------------------
   
   The ``Call`` wrapper can also do simple constant folding, if all of its input
   parameters are constants.  (Actually, the `args` and `kwargs` arguments must be
   *sequences* of constants and 2-tuples of constants, respectively.)
   
   If a ``Call`` can thus compute its value in advance, it does so, returning a
   ``Const`` node instead of a ``Call`` node::
   
       >>> Call( Const(type), [1] )
       Const(<... 'int'>)
   
   Thus, you can also take the ``const_value()`` of such calls::
   
       >>> const_value( Call( Const(dict), [], [('x',27)] ) )
       {'x': 27}
   
   Which means that constant folding can propagate up an AST if the result is
   passed in to another ``Call``::
   
       >>> Call(Const(type), [Call( Const(dict), [], [('x',27)] )])
       Const(<... 'dict'>)
   
   Notice that this folding takes place eagerly, during AST construction.  If you
   want to implement delayed folding after constant propagation or variable
   substitution, you'll need to recreate the tree, or use your own custom AST
   types.  (See `Custom Code Generation`_, below.)
   
   Note that you can disable folding using the ``fold=False`` keyword argument to
   ``Call``, if you want to ensure that even compile-time constants are computed
   at runtime.  Compare::
   
       >>> c = Code()
       >>> c( Call(Const(type), [1]) )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (<... 'int'>)
   
       >>> c = Code()
       >>> c( Call(Const(type), [1], fold=False) )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (<... 'type'>)
                     3 LOAD_CONST               2 (1)
                     6 CALL_FUNCTION            1
   
   Folding is also *automatically* disabled for calls with no arguments of any
   kind (such as ``globals()`` or ``locals()``), whose values are much more likely
   to change dynamically at runtime::
   
       >>> c = Code()
       >>> c( Call(Const(locals)) )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (<built-in function locals>)
                     3 CALL_FUNCTION            0
   
   Note, however, that folding is disabled for *any* zero-argument call,
   regardless of the thing being called.  It is not specific to ``locals()`` and
   ``globals()``, in other words.
   
   
   Logical And/Or
   --------------
   
   You can evaluate logical and/or expressions using the ``And`` and ``Or`` node
   types::
   
       >>> from peak.util.assembler import And, Or
   
       >>> c = Code()
       >>> c.return_( And([Local('x'), Local('y')]) )
       >>> dump(c.code())
                       LOAD_FAST                0 (x)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_FAST                1 (y)
               L1:     RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( Or([Local('x'), Local('y')]) )
       >>> dump(c.code())
                       LOAD_FAST                0 (x)
                       JUMP_IF_TRUE            L1
                       POP_TOP
                       LOAD_FAST                1 (y)
               L1:     RETURN_VALUE
   
   
   True or false constants are folded automatically, avoiding code generation
   for intermediate values that will never be used in the result::
   
       >>> c = Code()
       >>> c.return_( And([1, 2, Local('y')]) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (y)
                     3 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( And([1, 2, Local('y'), 0]) )
       >>> dump(c.code())
                       LOAD_FAST                0 (y)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_CONST               1 (0)
               L1:     RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( Or([1, 2, Local('y')]) )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (1)
                     3 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( Or([False, Local('y'), 3]) )
       >>> dump(c.code())
                       LOAD_FAST                0 (y)
                       JUMP_IF_TRUE            L1
                       POP_TOP
                       LOAD_CONST               1 (3)
               L1:     RETURN_VALUE
   
   
   Custom Code Generation
   ======================
   
   Code generation is extensible: you can use any callable as a code-generation
   target.  It will be called with exactly one argument: the code object.  It can
   then perform whatever operations are desired.
   
   In the most trivial case, you can use any unbound ``Code`` method as a code
   generation target, e.g.::
   
       >>> c = Code()
       >>> c.LOAD_GLOBAL('foo')
       >>> c(Call(Code.DUP_TOP, ()))
       >>> dis(c.code())
         0           0 LOAD_GLOBAL              0 (foo)
                     3 DUP_TOP
                     4 CALL_FUNCTION            0
   
   As you can see, the ``Code.DUP_TOP()`` is called on the code instance, causing
   a ``DUP_TOP`` opcode to be output.  This is sometimes a handy trick for
   accessing values that are already on the stack.  More commonly, however, you'll
   want to implement more sophisticated callables.
   
   To make it easy to create diverse target types, a ``nodetype()`` decorator is
   provided::
   
       >>> from peak.util.assembler import nodetype
   
   It allows you to create code generation target types using functions.  Your
   function should take one or more arguments, with a ``code=None`` optional
   argument in the last position.  It should check whether ``code is None`` when
   called, and if so, return a tuple of the preceding arguments.  If ``code``
   is not ``None``, then it should do whatever code generating tasks are required.
   For example::
   
       >>> def TryFinally(block1, block2, code=None):
       ...     if code is None:
       ...         return block1, block2
       ...     code(
       ...         Code.SETUP_FINALLY,
       ...             block1,
       ...         Code.POP_BLOCK,
       ...             block2,
       ...         Code.END_FINALLY
       ...     )
       >>> TryFinally = nodetype()(TryFinally)
   
   Note: although the nodetype() generator can be used above the function
   definition in either Python 2.3 or 2.4, it cannot be done in a doctest under
   Python 2.3, so this document doesn't attempt to demonstrate that.  Under
   2.4, you would do something like this::
   
       @nodetype()
       def TryFinally(...):
   
   and code that needs to also work under 2.3 should do something like this::
   
       nodetype()
       def TryFinally(...):
   
   But to keep the examples here working with doctest, we'll be doing our
   ``nodetype()`` calls after the end of the function definitions, e.g.::
   
       >>> def ExprStmt(value, code=None):
       ...     if code is None:
       ...         return value,
       ...     code( value, Code.POP_TOP )
       >>> ExprStmt = nodetype()(ExprStmt)
   
       >>> c = Code()
       >>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
       >>> dump(c.code())
                       SETUP_FINALLY           L1
                       LOAD_CONST               1 (1)
                       POP_TOP
                       POP_BLOCK
                       LOAD_CONST               0 (None)
               L1:     LOAD_CONST               2 (2)
                       POP_TOP
                       END_FINALLY
   
   The ``nodetype()`` decorator is virtually identical to the ``struct()``
   decorator in the DecoratorTools package, except that it does not support
   ``*args``, does not create a field for the ``code`` argument, and generates a
   ``__call__()`` method that reinvokes the wrapped function to do the actual
   code generation.
   
   Among the benefits of this decorator are:
   
   * It gives your node types a great debugging format::
   
       >>> tf = TryFinally(ExprStmt(1), ExprStmt(2))
       >>> tf
       TryFinally(ExprStmt(1), ExprStmt(2))
   
   * It makes named fields accessible::
   
       >>> tf.block1
       ExprStmt(1)
   
       >>> tf.block2
       ExprStmt(2)
   
   * Hashing and comparison work as expected (handy for algorithms that require
     comparing or caching AST subtrees, such as common subexpression
     elimination)::
   
       >>> ExprStmt(1) == ExprStmt(1)
       True
       >>> ExprStmt(1) == ExprStmt(2)
       False
   
   
   Please see the `struct decorator documentation`_ for info on how to customize
   node types further.
   
   .. _struct decorator documentation: http://peak.telecommunity.com/DevCenter/DecoratorTools#the-struct-decorator
   
   Note: hashing only works if all the values you return in your argument tuple
   are hashable, so you should try to convert them if possible.  For example, if
   an argument accepts any sequence, you should probably convert it to a tuple
   before returning it.  Most of the examples in this document, and the node types
   supplied by ``peak.util.assembler`` itself do this.
   
   
   Constant Folding in Custom Targets
   ----------------------------------
   
   If you want to incorporate constant-folding into your AST nodes, you can do
   so by checking for constant values and folding them at either construction
   or code generation time.  For example, this ``And`` node type (a simpler
   version of the one included in ``peak.util.assembler``) folds constants during
   code generation, by not generating unnecessary branches when it can
   prove which way a branch will go::
   
       >>> from peak.util.assembler import NotAConstant
   
       >>> def And(values, code=None):
       ...     if code is None:
       ...         return tuple(values),
       ...     end = Label()
       ...     for value in values[:-1]:
       ...         try:
       ...             if const_value(value):
       ...                 continue        # true constants can be skipped
       ...         except NotAConstant:    # but non-constants require code
       ...             code(value, end.JUMP_IF_FALSE_OR_POP)
       ...         else:       # and false constants end the chain right away
       ...             return code(value, end)
       ...     code(values[-1], end)
       >>> And = nodetype()(And)
   
       >>> c = Code()
       >>> c.return_( And([1, 2]) )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (2)
                     3 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( And([1, 2, Local('x')]) )
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 RETURN_VALUE
   
       >>> c = Code()
       >>> c.return_( And([Local('x'), False, 27]) )
       >>> dump(c.code())
                       LOAD_FAST                0 (x)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_CONST               1 (False)
               L1:     RETURN_VALUE
   
   The above example only folds constants at code generation time, however.  You
   can also do constant folding at AST construction time, using the
   ``fold_args()`` function.  For example::
   
       >>> from peak.util.assembler import fold_args
   
       >>> def Getattr(ob, name, code=None):
       ...     try:
       ...         name = const_value(name)
       ...     except NotAConstant:
       ...         return Call(Const(getattr), [ob, name])
       ...     if code is None:
       ...         return fold_args(Getattr, ob, name)
       ...     code(ob)
       ...     code.LOAD_ATTR(name)
       >>> Getattr = nodetype()(Getattr)
   
       >>> const_value(Getattr(1, '__class__'))
       <... 'int'>
   
   The ``fold_args()`` function tries to evaluate the node immediately, if all of
   its arguments are constants, by creating a temporary ``Code`` object, and
   running the supplied function against it, then doing an ``eval()`` on the
   generated code and wrapping the result in a ``Const``.  However, if any of the
   arguments are non-constant, the original arguments (less the function) are
   returned. This causes a normal node instance to be created instead of a
   ``Const``.
   
   This isn't a very *fast* way of doing partial evaluation, but it makes it
   really easy to define new code generation targets without writing custom
   constant-folding code for each one.  Just ``return fold_args(ThisType, *args)``
   instead of ``return args``, if you want your node constructor to be able to do
   eager evaluation.  If you need to, you can check your parameters in order to
   decide whether to call ``fold_args()`` or not; this is in fact how ``Call``
   implements its ``fold`` argument and the suppression of folding when
   the call has no arguments.
   
   (By the way, this same ``Getattr`` node type is also available
   
   
   Setting the Code's Calling Signature
   ====================================
   
   The simplest way to set up the calling signature for a ``Code`` instance is
   to clone an existing function or code object's signature, using the
   ``Code.from_function()`` or ``Code.from_code()`` classmethods.  These methods
   create a new ``Code`` instance whose calling signature (number and names of
   arguments) matches that of the original function or code objects::
   
       >>> def f1(a,b,*c,**d):
       ...     pass
   
       >>> c = Code.from_function(f1)
       >>> f2 = function(c.code(), globals())
   
       >>> import inspect
   
       >>> tuple(inspect.getargspec(f1))
       (['a', 'b'], 'c', 'd', None)
   
       >>> tuple(inspect.getargspec(f2))
       (['a', 'b'], 'c', 'd', None)
   
   Note that these constructors do not copy any actual *code* from the code
   or function objects.  They simply copy the signature, and, if you set the
   ``copy_lineno`` keyword argument to a true value, they will also set the
   created code object's ``co_firstlineno`` to match that of the original code or
   function object::
   
       >>> c1 = Code.from_function(f1, copy_lineno=True)
       >>> c1.co_firstlineno
       1
       >>> c1.co_filename is f1.func_code.co_filename
       True
   
   If you create a ``Code`` instance from a function that has nested positional
   arguments, the returned code object will include a prologue to unpack the
   arguments properly::
   
       >>> def f3(a, (b,c), (d,(e,f))):
       ...     pass
   
       >>> f4 = function(Code.from_function(f3).code(), globals())
       >>> dis(f4)
         0           0 LOAD_FAST                1 (.1)
                     3 UNPACK_SEQUENCE          2
                     6 STORE_FAST               3 (b)
                     9 STORE_FAST               4 (c)
                    12 LOAD_FAST                2 (.2)
                    15 UNPACK_SEQUENCE          2
                    18 STORE_FAST               5 (d)
                    21 UNPACK_SEQUENCE          2
                    24 STORE_FAST               6 (e)
                    27 STORE_FAST               7 (f)
   
   This is roughly the same code that Python would generate to do the same
   unpacking process, and is designed so that the ``inspect`` module will
   recognize it as an argument unpacking prologue::
   
       >>> tuple(inspect.getargspec(f3))
       (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)
   
       >>> tuple(inspect.getargspec(f4))
       (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)
   
   You can also use the ``from_spec(name='<lambda>', args=(), var=None, kw=None)``
   classmethod to explicitly set a name and argument spec for a new code object::
   
       >>> c = Code.from_spec('a', ('b', ('c','d'), 'e'), 'f', 'g')
       >>> c.co_name
       'a'
   
       >>> c.co_varnames
       ['b', '.1', 'e', 'f', 'g', 'c', 'd']
   
       >>> c.co_argcount
       3
   
       >>> tuple(inspect.getargs(c.code()))
       (['b', ['c', 'd'], 'e'], 'f', 'g')
   
   
   Code Attributes
   ===============
   
   ``Code`` instances have a variety of attributes corresponding to either the
   attributes of the Python code objects they generate, or to the current state
   of code generation.
   
   For example, the ``co_argcount`` and ``co_varnames`` attributes
   correspond to those used in creating the code for a Python function.  If you
   want your code to be a function, you can set them as follows::
   
       >>> c = Code()
       >>> c.co_argcount = 3
       >>> c.co_varnames = ['a','b','c']
   
       >>> c.LOAD_CONST(42)
       >>> c.RETURN_VALUE()
   
       >>> f = function(c.code(), globals())
       >>> f(1,2,3)
       42
   
       >>> import inspect
       >>> tuple(inspect.getargspec(f))
       (['a', 'b', 'c'], None, None, None)
   
   Although Python code objects want ``co_varnames`` to be a tuple, ``Code``
   instances use a list, so that names can be added during code generation.  The
   ``.code()`` method automatically creates tuples where necessary.
   
   Here are all of the ``Code`` attributes you may want to read or write:
   
   co_filename
       A string representing the source filename for this code.  If it's an actual
       filename, then tracebacks that pass through the generated code will display
       lines from the file.  The default value is ``'<generated code>'``.
   
   co_name
       The name of the function, class, or other block that this code represents.
       The default value is ``'<lambda>'``.
   
   co_argcount
       Number of positional arguments a function accepts; defaults to 0
   
   co_varnames
       A list of strings naming the code's local variables, beginning with its
       positional argument names, followed by its ``*`` and ``**`` argument names,
       if applicable, followed by any other local variable names.  These names
       are used by the ``LOAD_FAST`` and ``STORE_FAST`` opcodes, and invoking
       the ``.LOAD_FAST(name)`` and ``.STORE_FAST(name)`` methods of a code object
       will automatically add the given name to this list, if it's not already
       present.
   
   co_flags
       The flags for the Python code object.  This defaults to
       ``CO_OPTIMIZED | CO_NEWLOCALS``, which is the correct value for a function
       using "fast" locals.  This value is automatically or-ed with ``CO_NOFREE``
       when generating a code object, if the ``co_cellvars`` and ``co_freevars``
       attributes are empty.  And if you use the ``LOAD_NAME()``,
       ``STORE_NAME()``, or ``DELETE_NAME()`` methods, the ``CO_OPTIMIZED`` bit
       is automatically reset, since these opcodes can only be used when the
       code is running with a real (i.e. not virtualized) ``locals()`` dictionary.
   
       If you need to change any other flag bits besides the above, you'll need to
       set or clear them manually.  For your convenience, the
       ``peak.util.assembler`` module exports all the ``CO_`` constants used by
       Python.  For example, you can use ``CO_VARARGS`` and ``CO_VARKEYWORDS`` to
       indicate whether a function accepts ``*`` or ``**`` arguments, as long as
       you extend the ``co_varnames`` list accordingly.  (Assuming you don't have
       an existing function or code object with the desired signature, in which
       case you could just use the ``from_function()`` or ``from_code()``
       classmethods instead of messing with these low-level attributes and flags.)
   
   stack_size
       The predicted height of the runtime value stack, as of the current opcode.
       Its value is automatically updated by most opcodes, but if you are doing
       something sufficiently tricky (as in the ``Switch`` demo, below) you may
       need to explicitly set it.
   
       The ``stack_size`` automatically becomes ``None`` after any unconditional
       jump operations, such as ``JUMP_FORWARD``, ``BREAK_LOOP``, or
       ``RETURN_VALUE``.  When the stack size is ``None``, the only operations
       that can be performed are the resolving of forward references (which will
       set the stack size to what it was when the reference was created), or
       manually setting the stack size.
   
   co_freevars
       A tuple of strings naming a function's "free" variables.  Defaults to an
       empty tuple.  A function's free variables are the variables it "inherits"
       from its surrounding scope.  If you're going to use this, you should set
       it only once, before generating any code that references any free *or* cell
       variables.
   
   co_cellvars
       A tuple of strings naming a function's "cell" variables.  Defaults to an
       empty tuple.  A function's cell variables are the variables that are
       "inherited" by one or more of its nested functions.  If you're going to use
       this, you should set it only once, before generating any code that
       references any free *or* cell variables.
   
   These other attributes are automatically generated and maintained, so you'll
   probably never have a reason to change them:
   
   co_consts
       A list of constants used by the code; the first (zeroth?) constant is
       always ``None``.  Normally, this is automatically maintained; the
       ``.LOAD_CONST(value)`` method checks to see if the constant is already
       present in this list, and adds it if it is not there.
   
   co_names
       A list of non-optimized or global variable names.  It's automatically
       updated whenever you invoke a method to generate an opcode that uses
       such names.
   
   co_code
       A byte array containing the generated code.  Don't mess with this.
   
   co_firstlineno
       The first line number of the generated code.  It automatically gets set
       if you call ``.set_lineno()`` before generating any code; otherwise it
       defaults to zero.
   
   co_lnotab
       A byte array containing a generated line number table.  It's automatically
       generated, so don't mess with it.
   
   co_stacksize
       The maximum amount of stack space the code will require to run.  This
       value is updated automatically as you generate code or change
       the ``stack_size`` attribute.
   
   
   
   Stack Size Tracking and Dead Code Detection
   ===========================================
   
   ``Code`` objects automatically track the predicted stack size as code is
   generated, by updating the ``stack_size`` attribute as each operation occurs.
   A history is kept so that backward jumps can be checked to ensure that the
   current stack height is the same as at the jump's target.  Similarly, when
   forward jumps are resolved, the stack size at the jump target is checked
   against the stack size at the jump's origin.  If there are multiple jumps to
   the same location, they must all have the same stack size at the origin and
   the destination.
   
   In addition, whenever any unconditional jump code is generated (i.e.
   ``JUMP_FORWARD``, ``BREAK_LOOP``, ``CONTINUE_LOOP``, ``JUMP_ABSOLUTE``, or
   ``RETURN_VALUE``), the predicted ``stack_size`` is set to ``None``.  This
   means that the ``Code`` object does not know what the stack size will be at
   the current location.  You cannot issue *any* instructions when the predicted
   stack size is ``None``, as you will receive an ``AssertionError``::
   
       >>> c = Code()
       >>> fwd = c.JUMP_FORWARD()
       >>> print(c.stack_size)  # forward jump marks stack size as unknown
       None
   
       >>> c.LOAD_CONST(42)
       Traceback (most recent call last):
         ...
       AssertionError: Unknown stack size at this location
   
   Instead, you must resolve a forward reference (or define a previously-jumped to
   label).  This will propagate the stack size at the source of the jump to the
   current location, updating the stack size::
   
       >>> fwd()
       >>> c.stack_size
       0
   
   Note, by the way, that this means it is impossible for you to generate static
   "dead code".  In other words, you cannot generate code that isn't reachable.
   You should therefore check if ``stack_size`` is ``None`` before generating
   code that might be unreachable.  For example, consider this ``If``
   implementation::
   
       >>> def If(cond, then, else_=Pass, code=None):
       ...     if code is None:
       ...         return cond, then, else_
       ...     else_clause = Label()
       ...     end_if = Label()
       ...     code(cond, else_clause.JUMP_IF_FALSE_OR_POP, then)
       ...     code(end_if.JUMP_FORWARD, else_clause, Code.POP_TOP, else_)
       ...     code(end_if)
       >>> If = nodetype()(If)
   
   It works okay if there's no dead code::
   
       >>> c = Code()
       >>> c( If(Local('a'), 42, 55) )
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_CONST               1 (42)
                       JUMP_FORWARD            L2
               L1:     POP_TOP
                       LOAD_CONST               2 (55)
   
   But it breaks if you end the "then" block with a return::
   
       >>> c = Code()
       >>> c( If(23, Return(42), 55) )
       Traceback (most recent call last):
         ...
       AssertionError: Unknown stack size at this location
   
   What we need is something like this instead::
   
       >>> def If(cond, then, else_=Pass, code=None):
       ...     if code is None:
       ...         return cond, then, else_
       ...     else_clause = Label()
       ...     end_if = Label()
       ...     code(cond, else_clause.JUMP_IF_FALSE_OR_POP, then)
       ...     if code.stack_size is not None:
       ...         end_if.JUMP_FORWARD(code)
       ...     code(else_clause, Code.POP_TOP, else_, end_if)
       >>> If = nodetype()(If)
   
   As you can see, the dead code is now eliminated::
   
       >>> c = Code()
       >>> c( If(Local('a'), Return(42), 55) )
       >>> dump(c.code())
                       LOAD_FAST                0 (a)
                       JUMP_IF_FALSE           L1
                       POP_TOP
                       LOAD_CONST               1 (42)
                       RETURN_VALUE
               L1:     POP_TOP
                       LOAD_CONST               2 (55)
   
   
   Blocks, Loops, and Exception Handling
   =====================================
   
   The Python ``SETUP_FINALLY``, ``SETUP_EXCEPT``, and ``SETUP_LOOP`` opcodes
   all create "blocks" that go on the frame's "block stack" at runtime.  Each of
   these opcodes *must* be matched with *exactly one* ``POP_BLOCK`` opcode -- no
   more, and no less.  ``Code`` objects enforce this using an internal block stack
   that matches each setup with its corresponding ``POP_BLOCK``.  Trying to pop
   a nonexistent block, or trying to generate code when unclosed blocks exist is
   an error::
   
       >>> c = Code()
       >>> c.POP_BLOCK()
       Traceback (most recent call last):
         ...
       AssertionError: Not currently in a block
   
       >>> c.SETUP_FINALLY()
       >>> c.code()
       Traceback (most recent call last):
         ...
       AssertionError: 1 unclosed block(s)
   
       >>> c.POP_BLOCK()
       >>> c.code()
       <code object <lambda>...>
   
   
   Exception Stack Size Adjustment
   -------------------------------
   
   When you issue a ``SETUP_EXCEPT`` or ``SETUP_FINALLY``, the code's maximum
   stack size is raised to ensure that it's at least 3 items higher than
   the current stack size.  That way, there will be room for the items that Python
   puts on the stack when jumping to a block's exception handling code::
   
       >>> c = Code()
       >>> c.SETUP_FINALLY()
       >>> c.stack_size, c.co_stacksize
       (0, 3)
   
   As you can see, the current stack size is unchanged, but the maximum stack size
   has increased.  This increase is relative to the current stack size, though;
   it's not an absolute increase::
   
       >>> c = Code()
       >>> c(1,2,3,4, *[Code.POP_TOP]*4)   # push 4 things, then pop 'em
       >>> c.SETUP_FINALLY()
       >>> c.stack_size, c.co_stacksize
       (0, 4)
   
   And this stack adjustment doesn't happen for loops, because they don't have
   exception handlers::
   
       >>> c = Code()
       >>> c.SETUP_LOOP()
       >>> c.stack_size, c.co_stacksize
       (0, 0)
   
   
   Try/Except Blocks
   -----------------
   
   In the case of ``SETUP_EXCEPT``, the *current* stack size is increased by 3
   after a ``POP_BLOCK``, because the code that follows will be an exception
   handler and will thus always have exception items on the stack::
   
       >>> c = Code()
       >>> c.SETUP_EXCEPT()
       >>> else_ = c.POP_BLOCK()
       >>> c.stack_size, c.co_stacksize
       (3, 3)
   
   When a ``POP_BLOCK()`` is matched with a ``SETUP_EXCEPT``, it automatically
   emits a ``JUMP_FORWARD`` and returns a forward reference that should be called
   back when the "else" clause or end of the entire try/except statement is
   reached::
   
       >>> c.POP_TOP()     # get rid of exception info
       >>> c.POP_TOP()
       >>> c.POP_TOP()
       >>> else_()
       >>> c.return_()
       >>> dump(c.code())
                       SETUP_EXCEPT            L1
                       POP_BLOCK
                       JUMP_FORWARD            L2
               L1:     POP_TOP
                       POP_TOP
                       POP_TOP
               L2:     LOAD_CONST               0 (None)
                       RETURN_VALUE
   
   In the example above, an empty block executes with an exception handler that
   begins at offset 7.  When the block is done, it jumps forward to the end of
   the try/except construct at offset 10.  The exception handler does nothing but
   remove the exception information from the stack before it falls through to the
   end.
   
   Note, by the way, that it's usually easier to use labels to define blocks
   like this::
   
       >>> c = Code()
       >>> done = Label()
       >>> c(
       ...     done.SETUP_EXCEPT,
       ...     done.POP_BLOCK,
       ...         Code.POP_TOP, Code.POP_TOP, Code.POP_TOP,
       ...     done,
       ...     Return()
       ... )
   
       >>> dump(c.code())
                       SETUP_EXCEPT             L1
                       POP_BLOCK
                       JUMP_FORWARD             L2
               L1:     POP_TOP
                       POP_TOP
                       POP_TOP
               L2:     LOAD_CONST               0 (None)
                       RETURN_VALUE
   
   (Labels have a ``POP_BLOCK`` attribute that you can pass in when generating
   code.)
   
   And, for generating typical try/except blocks, you can use the ``TryExcept``
   node type, which takes a body, a sequence of exception-type/handler pairs,
   and an optional "else" clause::
   
       >>> from peak.util.assembler import TryExcept
       >>> c = Code()
       >>> c.return_(
       ...     TryExcept(
       ...         Return(1),                                      # body
       ...         [(Const(KeyError),2), (Const(TypeError),3)],    # handlers
       ...         Return(4)                                       # else clause
       ...     )
       ... )
   
       >>> dump(c.code())
                       SETUP_EXCEPT            L1
                       LOAD_CONST               1 (1)
                       RETURN_VALUE
                       POP_BLOCK
                       JUMP_FORWARD            L4
               L1:     DUP_TOP
                       LOAD_CONST               2 (<...KeyError...>)
                       COMPARE_OP              10 (exception match)
                       JUMP_IF_FALSE           L2
                       POP_TOP
                       POP_TOP
                       POP_TOP
                       POP_TOP
                       LOAD_CONST               3 (2)
                       JUMP_FORWARD            L5
               L2:     POP_TOP
                       DUP_TOP
                       LOAD_CONST               4 (<...TypeError...>)
                       COMPARE_OP              10 (exception match)
                       JUMP_IF_FALSE           L3
                       POP_TOP
                       POP_TOP
                       POP_TOP
                       POP_TOP
                       LOAD_CONST               5 (3)
                       JUMP_FORWARD            L5
               L3:     POP_TOP
                       END_FINALLY
               L4:     LOAD_CONST               6 (4)
                       RETURN_VALUE
               L5:     RETURN_VALUE
   
   
   Try/Finally Blocks
   ------------------
   
   When a ``POP_BLOCK()`` is matched with a ``SETUP_FINALLY``, it automatically
   emits a ``LOAD_CONST(None)``, so that when the corresponding ``END_FINALLY``
   is reached, it will know that the "try" block exited normally.  Thus, the
   normal pattern for producing a try/finally construct is as follows::
   
       >>> c = Code()
       >>> c.SETUP_FINALLY()
       >>> # "try" suite goes here
       >>> c.POP_BLOCK()
       >>> # "finally" suite goes here
       >>> c.END_FINALLY()
   
   And it produces code that looks like this::
   
       >>> dump(c.code())
                       SETUP_FINALLY           L1
                       POP_BLOCK
                       LOAD_CONST               0 (None)
               L1:     END_FINALLY
   
   The ``END_FINALLY`` opcode will remove 1, 2, or 3 values from the stack at
   runtime, depending on how the "try" block was exited.  In the case of simply
   "falling off the end" of the "try" block, however, the inserted
   ``LOAD_CONST(None)`` puts one value on the stack, and that one value is popped
   off by the ``END_FINALLY``.  For that reason, ``Code`` objects treat
   ``END_FINALLY`` as if it always popped exactly one value from the stack, even
   though at runtime this may vary.  This means that the estimated stack levels
   within the "finally" clause may not be accurate -- which is why ``POP_BLOCK()``
   adjusts the maximum expected stack size to accomodate up to three values being
   put on the stack by the Python interpreter for exception handling.
   
   For your convenience, the ``TryFinally`` node type can also be used to generate
   try/finally blocks::
   
       >>> from peak.util.assembler import TryFinally
       >>> c = Code()
       >>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
       >>> dump(c.code())
                       SETUP_FINALLY           L1
                       LOAD_CONST               1 (1)
                       POP_TOP
                       POP_BLOCK
                       LOAD_CONST               0 (None)
               L1:     LOAD_CONST               2 (2)
                       POP_TOP
                       END_FINALLY
   
   
   Loops
   -----
   
   The ``POP_BLOCK`` for a loop marks the end of the loop body, and the beginning
   of the "else" clause, if there is one.  It returns a forward reference that
   should be called back either at the end of the "else" clause, or immediately if
   there is no "else".  Any ``BREAK_LOOP`` opcodes that appear in the loop body
   will jump ahead to the point at which the forward reference is resolved.
   
   Here, we'll generate a loop that counts down from 5 to 0, with an "else" clause
   that returns 42.  Three labels are needed: one to mark the end of the overall
   block, one that's looped back to, and one that marks the "else" clause::
   
       >>> c = Code()
       >>> block = Label()
       >>> loop = Label()
       >>> else_ = Label()
       >>> c(
       ...     block.SETUP_LOOP,
       ...         5,      # initial setup - this could be a GET_ITER instead
       ...     loop,
       ...         else_.JUMP_IF_FALSE,        # while x:
       ...         1, Code.BINARY_SUBTRACT,    #     x -= 1
       ...         loop.CONTINUE_LOOP,
       ...     else_,                          # else:
       ...         Code.POP_TOP,
       ...     block.POP_BLOCK,
       ...         Return(42),                 #     return 42
       ...     block,
       ...     Return()
       ... )
   
       >>> dump(c.code())
                       SETUP_LOOP              L3
                       LOAD_CONST               1 (5)
               L1:     JUMP_IF_FALSE           L2
                       LOAD_CONST               2 (1)
                       BINARY_SUBTRACT
                       JUMP_ABSOLUTE           L1
               L2:     POP_TOP
                       POP_BLOCK
                       LOAD_CONST               3 (42)
                       RETURN_VALUE
               L3:     LOAD_CONST               0 (None)
                       RETURN_VALUE
   
       >>> eval(c.code())
       42
   
   
   Break and Continue
   ------------------
   
   The ``BREAK_LOOP`` and ``CONTINUE_LOOP`` opcodes can only be used inside of
   an active loop::
   
       >>> c = Code()
       >>> c.BREAK_LOOP()
       Traceback (most recent call last):
         ...
       AssertionError: Not inside a loop
   
       >>> c.CONTINUE_LOOP(c.here())
       Traceback (most recent call last):
         ...
       AssertionError: Not inside a loop
   
   And ``CONTINUE_LOOP`` is automatically replaced with a ``JUMP_ABSOLUTE`` if
   it occurs directly inside a loop block::
   
       >>> c.LOAD_CONST(57)
       >>> c.SETUP_LOOP()
       >>> fwd = c.JUMP_IF_TRUE()
       >>> c.CONTINUE_LOOP(c.here())
       >>> fwd()
       >>> c.BREAK_LOOP()
       >>> c.POP_BLOCK()()
       >>> dump(c.code())
                       LOAD_CONST               1 (57)
                       SETUP_LOOP              L3
                       JUMP_IF_TRUE            L2
               L1:     JUMP_ABSOLUTE           L1
               L2:     BREAK_LOOP
                       POP_BLOCK
   
   In other words, ``CONTINUE_LOOP`` only really emits a ``CONTINUE_LOOP`` opcode
   if it's inside some other kind of block within the loop, e.g. a "try" clause::
   
       >>> c = Code()
       >>> c.LOAD_CONST(57)
       >>> c.SETUP_LOOP()
       >>> loop = c.here()
       >>> c.SETUP_FINALLY()
       >>> fwd = c.JUMP_IF_TRUE()
       >>> c.CONTINUE_LOOP(loop)
       >>> fwd()
       >>> c.POP_BLOCK()
       >>> c.END_FINALLY()
       >>> c.POP_BLOCK()()
       >>> dump(c.code())
                       LOAD_CONST               1 (57)
                       SETUP_LOOP              L4
               L1:     SETUP_FINALLY           L3
                       JUMP_IF_TRUE            L2
                       CONTINUE_LOOP           L1
               L2:     POP_BLOCK
                       LOAD_CONST               0 (None)
               L3:     END_FINALLY
                       POP_BLOCK
   
   ``for`` Loops
   -------------
   
   There is a ``For()`` node type available for generating simple loops (without
   break/continue support).  It takes an iterable expression, an assignment
   clause, and a loop body::
   
       >>> from peak.util.assembler import For
       >>> y = Call(Const(list), (Call(Const(range), (3,)),))
       >>> x = LocalAssign('x')
       >>> body = Suite([Local('x'), Code.PRINT_EXPR])
   
       >>> c = Code()
       >>> c(For(y, x, body))  # for x in range(3): print x
       >>> c.return_()
       >>> dump(c.code())
                       LOAD_CONST               1 ([0, 1, 2])
                       GET_ITER
               L1:     FOR_ITER                L2
                       STORE_FAST               0 (x)
                       LOAD_FAST                0 (x)
                       PRINT_EXPR
                       JUMP_ABSOLUTE           L1
               L2:     LOAD_CONST               0 (None)
                       RETURN_VALUE
   
   The arguments are given in execution order: first the "in" value of the loop,
   then the assignment to a loop variable, and finally the body of the loop.  The
   distinction between the assignment and body, however, is only for clarity and
   convenience (to avoid needing to glue the assignment to the body with a
   ``Suite``).  If you already have a suite or only need one node for the entire
   loop body, you can do the same thing with only two arguments::
   
       >>> c = Code()
       >>> c(For(y, Code.PRINT_EXPR))
       >>> c.return_()
       >>> dump(c.code())
                       LOAD_CONST               1 ([0, 1, 2])
                       GET_ITER
               L1:     FOR_ITER                L2
                       PRINT_EXPR
                       JUMP_ABSOLUTE           L1
               L2:     LOAD_CONST               0 (None)
                       RETURN_VALUE
   
   Notice, by the way, that ``For()`` does NOT set up a loop block for you, so if
   you want to be able to use break and continue, you'll need to wrap the loop in
   a labelled SETUP_LOOP/POP_BLOCK pair, as described in the preceding sections.
   
   
   List Comprehensions
   -------------------
   
   In order to generate correct list comprehension code for the target Python
   version, you must use the ``ListComp()`` and ``LCAppend()`` node types.  This
   is because Python versions 2.4 and up store the list being built in a temporary
   variable, and use a special ``LIST_APPEND`` opcode to append values, while 2.3
   stores the list's ``append()`` method in the temporary variable, and calls it
   to append values.
   
   The ``ListComp()`` node wraps a code body (usually a ``For()`` loop) and
   manages the creation and destruction of a temporary variable (e.g. ``_[1]``,
   ``_[2]``, etc.).  The ``LCAppend()`` node type wraps a value or expression to
   be appended to the innermost active ``ListComp()`` in progress::
   
       >>> from peak.util.assembler import ListComp, LCAppend
       >>> c = Code()
       >>> simple = ListComp(For(y, x, LCAppend(Local('x'))))
       >>> c.return_(simple)
       >>> eval(c.code())
       [0, 1, 2]
   
       >>> c = Code()
       >>> c.return_(ListComp(For(y, x, LCAppend(simple))))
       >>> eval(c.code())
       [[0, 1, 2], [0, 1, 2], [0, 1, 2]]
   
   
   Closures and Nested Functions
   =============================
   
   Free and Cell Variables
   -----------------------
   
   To implement closures and nested scopes, your code objects must use "free" or
   "cell" variables in place of regular "fast locals".  A "free" variable is one
   that is defined in an outer scope, and a "cell" variable is one that's defined
   in the current scope, but will also be used by nested functions.
   
   The simplest way to set up free or cell variables is to use a code object's
   ``makefree(names)`` and ``makecells(names)`` methods::
   
       >>> c = Code()
       >>> c.co_cellvars
       ()
       >>> c.co_freevars
       ()
   
       >>> c.makefree(['x', 'y'])
       >>> c.makecells(['z'])
   
       >>> c.co_cellvars
       ('z',)
       >>> c.co_freevars
       ('x', 'y')
   
   When a name has been defined as a free or cell variable, the ``_DEREF`` opcode
   variants are used to generate ``Local()`` and ``LocalAssign()`` nodes::
   
       >>> c((Local('x'), Local('y')), LocalAssign('z'))
       >>> dis(c.code())
         0           0 LOAD_DEREF               1 (x)
                     3 LOAD_DEREF               2 (y)
                     6 BUILD_TUPLE              2
                     9 STORE_DEREF              0 (z)
   
   If you have already written code in a code object that operates on the relevant
   locals, the code is retroactively patched to use the ``_DEREF`` opcodes::
   
       >>> c = Code()
       >>> c((Local('x'), Local('y')), LocalAssign('z'))
       >>> dis(c.code())
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 BUILD_TUPLE              2
                     9 STORE_FAST               2 (z)
   
       >>> c.makefree(['x', 'y'])
       >>> c.makecells(['z'])
   
       >>> dis(c.code())
         0           0 LOAD_DEREF               1 (x)
                     3 LOAD_DEREF               2 (y)
                     6 BUILD_TUPLE              2
                     9 STORE_DEREF              0 (z)
   
   This means that you can defer the decision of which locals are free/cell
   variables until the code is ready to be generated.  In fact, by passing in
   a "parent" code object to the ``.code()`` method, you can get BytecodeAssembler
   to automatically call ``makefree()`` and ``makecells()`` for the correct
   variable names in the child and parent code objects, as we'll see in the next
   section.
   
 This is roughly the same code that Python would generate to do the same  
 unpacking process, and is designed so that the ``inspect`` module will  
 recognize it as an argument unpacking prologue::  
   
     >>> inspect.getargspec(f3)  Nested Code Objects
     (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)  -------------------
   
     >>> inspect.getargspec(f4)  To create a code object for use in a nested scope, you can use the parent code
     (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)  object's ``nested()`` method.  It works just like the ``from_spec()``
   classmethod, except that the ``co_filename`` of the parent is copied to the
   child::
   
       >>> p = Code()
       >>> p.co_filename = 'testname'
   
 Code Attributes      >>> c = p.nested('sub', ['a','b'], 'c', 'd')
 ===============  
   
 ``Code`` instances have a variety of attributes corresponding to either the      >>> c.co_name
 attributes of the Python code objects they generate, or to the current state      'sub'
 of code generation.  
   
 For example, the ``co_argcount`` and ``co_varnames`` attributes      >>> c.co_filename
 correspond to those used in creating the code for a Python function.  If you      'testname'
 want your code to be a function, you can set them as follows::  
   
     >>> c = Code()      >>> tuple(inspect.getargs(c.code(p)))
     >>> c.co_argcount = 3      (['a', 'b'], 'c', 'd')
     >>> c.co_varnames = ['a','b','c']  
   
     >>> c.LOAD_CONST(42)  Notice that you must pass the parent code object to the child's ``.code()``
     >>> c.RETURN_VALUE()  method to ensure that free/cell variables are properly set up.  When the
   ``code()`` method is given another code object as a parameter, it automatically
   converts any locally-read (but not written) to "free" variables in the child
   code, and ensures that those same variables become "cell" variables in the
   supplied parent code object::
   
     >>> f = new.function(c.code(), globals())      >>> p.LOAD_CONST(42)
     >>> f(1,2,3)      >>> p(LocalAssign('a'))
     42      >>> dis(p.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               0 (a)
   
     >>> import inspect      >>> c = p.nested()
     >>> inspect.getargspec(f)      >>> c(Local('a'))
     (['a', 'b', 'c'], None, None, None)  
   
 Although Python code objects want ``co_varnames`` to be a tuple, ``Code``      >>> dis(c.code(p))
 instances use a list, so that names can be added during code generation.  The        0           0 LOAD_DEREF               0 (a)
 ``.code()`` method automatically creates tuples where necessary.  
   
 Here are all of the ``Code`` attributes you may want to read or write:      >>> dis(p.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (a)
   
 co_filename  Notice that the ``STORE_FAST`` in the parent code object was automatically
     A string representing the source filename for this code.  If it's an actual  patched to a ``STORE_DEREF``, with an updated offset if applicable.  Any
     filename, then tracebacks that pass through the generated code will display  future use of ``Local('a')`` or ``LocalAssign('a')`` in the parent or child
     lines from the file.  The default value is ``'<generated code>'``.  code objects will now refer to the free/cell variable, rather than the "local"
   variable::
   
 co_name      >>> p(Local('a'))
     The name of the function, class, or other block that this code represents.      >>> dis(p.code())
     The default value is ``'<lambda>'``.        0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (a)
                     6 LOAD_DEREF               0 (a)
   
 co_argcount      >>> c(LocalAssign('a'))
     Number of positional arguments a function accepts; defaults to 0      >>> dis(c.code(p))
         0           0 LOAD_DEREF               0 (a)
                     3 STORE_DEREF              0 (a)
   
 co_varnames  
     A list of strings naming the code's local variables, beginning with its  
     positional argument names, followed by its ``*`` and ``**`` argument names,  
     if applicable, followed by any other local variable names.  These names  
     are used by the ``LOAD_FAST`` and ``STORE_FAST`` opcodes, and invoking  
     the ``.LOAD_FAST(name)`` and ``.STORE_FAST(name)`` methods of a code object  
     will automatically add the given name to this list, if it's not already  
     present.  
   
 co_flags  ``Function()``
     The flags for the Python code object.  This defaults to  --------------
     ``CO_OPTIMIZED | CO_NEWLOCALS``, which is the correct value for a function  
     using "fast" locals.  This value is automatically or-ed with ``CO_NOFREE``  
     when generating a code object, if the ``co_cellvars`` and ``co_freevars``  
     attributes are empty.  And if you use the ``LOAD_NAME()``,  
     ``STORE_NAME()``, or ``DELETE_NAME()`` methods, the ``CO_OPTIMIZED`` bit  
     is automatically reset, since these opcodes can only be used when the  
     code is running with a real (i.e. not virtualized) ``locals()`` dictionary.  
   
     If you need to change any other flag bits besides the above, you'll need to  The ``Function(body, name='<lambda>', args=(), var=None, kw=None, defaults=())``
     set or clear them manually.  For your convenience, the  node type creates a function object from the specified body and the optional
     ``peak.util.assembler`` module exports all the ``CO_`` constants used by  name, argument specs, and defaults.  The ``Function()`` node generates code to
     Python.  For example, you can use ``CO_VARARGS`` and ``CO_VARKEYWORDS`` to  create the function object with the appropriate defaults and closure (if
     indicate whether a function accepts ``*`` or ``**`` arguments, as long as  applicable), and any needed free/cell variables are automatically set up in the
     you extend the ``co_varnames`` list accordingly.  (Assuming you don't have  parent and child code objects.  The newly generated function will be on top of
     an existing function or code object with the desired signature, in which  the stack at the end of the generated code::
     case you could just use the ``from_function()`` or ``from_code()``  
     classmethods instead of messing with these low-level attributes and flags.)      >>> from peak.util.assembler import Function
       >>> c = Code()
       >>> c.co_filename = '<string>'
       >>> c.return_(Function(Return(Local('a')), 'f', ['a'], defaults=[42]))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 LOAD_CONST               2 (<... f..., file ...<string>..., line ...>)
                     6 MAKE_FUNCTION            1
                     9 RETURN_VALUE
   
 stack_size  Now that we've generated the code for a function returning a function, let's
     The predicted height of the runtime value stack, as of the current opcode.  run it, to get the function we defined::
     Its value is automatically updated by most opcodes, but you may want to  
     save and restore it for things like try/finally blocks.  
   
 co_freevars      >>> f = eval(c.code())
     A tuple of strings naming a function's "cell" variables.  Defaults to an      >>> f
     empty tuple.  A function's free variables are the variables it "inherits"      <function f at ...>
     from its surrounding scope.  If you're going to use this, you should set  
     it only once, before generating any code that references any free *or* cell  
     variables.  
   
 co_cellvars      >>> tuple(inspect.getargspec(f))
     A tuple of strings naming a function's "cell" variables.  Defaults to an      (['a'], None, None, (42,))
     empty tuple.  A function's cell variables are the variables that are  
     "inherited" by one or more of its nested functions.  If you're going to use  
     this, you should set it only once, before generating any code that  
     references any free *or* cell variables.  
   
 These other attributes are automatically generated and maintained, so you'll      >>> f()
 probably never have a reason to change them:      42
   
 co_consts      >>> f(99)
     A list of constants used by the code; the first (zeroth?) constant is      99
     always ``None``.  Normally, this is automatically maintained; the  
     ``.LOAD_CONST(value)`` method checks to see if the constant is already  
     present in this list, and adds it if it is not there.  
   
 co_names  Now let's create a doubly nested function, with some extras::
     A list of non-optimized or global variable names.  It's automatically  
     updated whenever you invoke a method to generate an opcode that uses  
     such names.  
   
 co_code      >>> c = Code()
     A byte array containing the generated code.  Don't mess with this.      >>> c.co_filename = '<string>'
       >>> c.return_(
       ...     Function(Return(Function(Return(Local('a')))),
       ...     'f', ['a', 'b'], 'c', 'd', [99, 66])
       ... )
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (99)
                     3 LOAD_CONST               2 (66)
                     6 LOAD_CONST               3 (<... f..., file ...<string>..., line ...>)
                     9 MAKE_FUNCTION            2
                    12 RETURN_VALUE
   
       >>> f = eval(c.code())
       >>> f
       <function f at ...>
   
       >>> tuple(inspect.getargspec(f))
       (['a', 'b'], 'c', 'd', (99, 66))
   
       >>> dis(f)
         0           0 LOAD_CLOSURE             0 (a)
                     ... LOAD_CONST               1 (<... <lambda>..., file ...<string>..., line ...>)
                     ... MAKE_CLOSURE             0
                     ... RETURN_VALUE
   
 co_firstlineno      >>> dis(f())
     The first line number of the generated code.  It automatically gets set        0           0 LOAD_DEREF               0 (a)
     if you call ``.set_lineno()`` before generating any code; otherwise it                    3 RETURN_VALUE
     defaults to zero.  
   
 co_lnotab      >>> f(42)()
     A byte array containing a generated line number table.  It's automatically      42
     generated, so don't mess with it.  
   
 co_stacksize      >>> f()()
     The maximum amount of stack space the code will require to run.  This      99
     value is usually updated automatically as you generate code.  
   
   As you can see, ``Function()`` not only takes care of setting up free/cell
   variables in all the relevant scopes, it also chooses whether to use
   ``MAKE_FUNCTION`` or ``MAKE_CLOSURE``, and generates code for the defaults.
   
   (Note, by the way, that the `defaults` argument should be a sequence of
   generatable expressions; in the examples here, we used numbers, but they could
   have been arbitrary expression nodes.)
   
   
 ----------------------  ----------------------
Line 425 
Line 2406 
   
 Stack size tracking::  Stack size tracking::
   
     >>> c = Code()      >>> c = Code()          # 0
     >>> c.LOAD_CONST(1)      >>> c.LOAD_CONST(1)     # 1
     >>> c.POP_TOP()      >>> c.POP_TOP()         # 0
     >>> c.LOAD_CONST(2)      >>> c.LOAD_CONST(2)     # 1
     >>> c.LOAD_CONST(3)      >>> c.LOAD_CONST(3)     # 2
     >>> c.co_stacksize      >>> c.co_stacksize
     2      2
     >>> c.BINARY_ADD()      >>> c.stack_history
     >>> c.LOAD_CONST(4)      [0, ..., 1, 0, ..., 1]
       >>> c.BINARY_ADD()      # 1
       >>> c.LOAD_CONST(4)     # 2
     >>> c.co_stacksize      >>> c.co_stacksize
     2      2
       >>> c.stack_history
       [0, ..., 1, 0, 1, ..., 2, ..., 1]
     >>> c.LOAD_CONST(5)      >>> c.LOAD_CONST(5)
     >>> c.LOAD_CONST(6)      >>> c.LOAD_CONST(6)
     >>> c.co_stacksize      >>> c.co_stacksize
Line 471 
Line 2456 
                   3 LOAD_ATTR                1 (bar)                    3 LOAD_ATTR                1 (bar)
                   6 DELETE_FAST              0 (baz)                    6 DELETE_FAST              0 (baz)
   
   Code iteration::
   
       >>> c.DUP_TOP()
       >>> c.return_(Code.POP_TOP)
       >>> list(c) == [
       ...     (0, op.LOAD_GLOBAL, 0),
       ...     (3, op.LOAD_ATTR, 1),
       ...     (6, op.DELETE_FAST, 0),
       ...     (9, op.DUP_TOP, None),
       ...     (10, op.POP_TOP, None),
       ...     (11, op.RETURN_VALUE, None)
       ... ]
       True
   
   Code patching::
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
       >>> c.DELETE_FAST('x')
       >>> c.RETURN_VALUE()
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               0 (x)
                     6 LOAD_FAST                0 (x)
                     9 DELETE_FAST              0 (x)
                    12 RETURN_VALUE
   
   
       >>> c.co_varnames
       ['x']
       >>> c.co_varnames.append('y')
   
       >>> c._patch(
       ...     {op.LOAD_FAST:  op.LOAD_FAST,
       ...      op.STORE_FAST: op.STORE_FAST,
       ...      op.DELETE_FAST: op.DELETE_FAST},
       ...     {0: 1}
       ... )
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               1 (y)
                     6 LOAD_FAST                1 (y)
                     9 DELETE_FAST              1 (y)
                    12 RETURN_VALUE
   
       >>> c._patch({op.RETURN_VALUE: op.POP_TOP})
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               1 (y)
                     6 LOAD_FAST                1 (y)
                     9 DELETE_FAST              1 (y)
                    12 POP_TOP
   
   Converting locals to free/cell vars::
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_FAST               0 (x)
                     6 LOAD_FAST                0 (x)
   
       >>> c.co_freevars = 'y', 'x'
       >>> c.co_cellvars = 'z',
   
       >>> c._locals_to_cells()
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              2 (x)
                     6 LOAD_DEREF               2 (x)
   
       >>> c.DELETE_FAST('x')
       >>> c._locals_to_cells()
       Traceback (most recent call last):
         ...
       AssertionError: Can't delete local 'x' used in nested scope
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
   
       >>> c.co_freevars
       ()
       >>> c.makefree(['x'])
       >>> c.co_freevars
       ('x',)
   
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (x)
                     6 LOAD_DEREF               0 (x)
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
       >>> c.makecells(['x'])
       >>> c.co_freevars
       ()
       >>> c.co_cellvars
       ('x',)
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              0 (x)
                     6 LOAD_DEREF               0 (x)
   
       >>> c = Code()
       >>> c.LOAD_CONST(42)
       >>> c.STORE_FAST('x')
       >>> c.LOAD_FAST('x')
       >>> c.makefree('x')
       >>> c.makecells(['y'])
       >>> c.co_freevars
       ('x',)
       >>> c.co_cellvars
       ('y',)
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (42)
                     3 STORE_DEREF              1 (x)
                     6 LOAD_DEREF               1 (x)
   
       >>> c = Code()
       >>> c.co_flags &= ~op.CO_OPTIMIZED
       >>> c.makecells(['q'])
       Traceback (most recent call last):
         ...
       AssertionError: Can't use cellvars in unoptimized scope
   
   
   
   Auto-free promotion with code parent:
   
       >>> p = Code()
       >>> c = Code()
       >>> c.LOAD_FAST('x')
       >>> dis(c.code(p))
         0           0 LOAD_DEREF               0 (x)
       >>> p.co_cellvars
       ('x',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,y,z=2: None)
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
   
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_FAST                2 (z)
       >>> p.co_cellvars
       ()
   
       >>> c.LOAD_FAST('q')
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_FAST                2 (z)
                     9 LOAD_DEREF               0 (q)
       >>> p.co_cellvars
       ('q',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,*y,**z: None)
       >>> c.LOAD_FAST('q')
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
       >>> dis(c.code(p))
         0           0 LOAD_DEREF               0 (q)
                     3 LOAD_FAST                0 (x)
                     6 LOAD_FAST                1 (y)
                     9 LOAD_FAST                2 (z)
       >>> p.co_cellvars
       ('q',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,*y: None)
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_DEREF               0 (z)
       >>> p.co_cellvars
       ('z',)
   
       >>> p = Code()
       >>> c = Code.from_function(lambda x,**y: None)
       >>> c.LOAD_FAST('x')
       >>> c.LOAD_FAST('y')
       >>> c.LOAD_FAST('z')
       >>> dis(c.code(p))
         0           0 LOAD_FAST                0 (x)
                     3 LOAD_FAST                1 (y)
                     6 LOAD_DEREF               0 (z)
       >>> p.co_cellvars
       ('z',)
   
   
   Stack tracking on jumps::
   
       >>> c = Code()
       >>> else_ = Label()
       >>> end = Label()
       >>> c(99, else_.JUMP_IF_TRUE_OR_POP, end.JUMP_FORWARD)
       >>> c(else_, Code.POP_TOP, end)
       >>> dump(c.code())
                       LOAD_CONST               1 (99)
                       JUMP_IF_TRUE            L1
                       POP_TOP
                       JUMP_FORWARD            L2
               L1:     POP_TOP
   
       >>> c.stack_size
       0
       >>> if sys.version>='2.7':
       ...     print(c.stack_history == [0, 1, 1, 1,    0, 0, 0, None, None, 1])
       ... else:
       ...     print(c.stack_history == [0, 1, 1, 1, 1, 1, 1, 0, None, None, 1])
       True
   
   
       >>> c = Code()
       >>> fwd = c.JUMP_FORWARD()
       >>> c.LOAD_CONST(42)    # forward jump marks stack size unknown
       Traceback (most recent call last):
         ...
       AssertionError: Unknown stack size at this location
   
       >>> c.stack_size = 0
       >>> c.LOAD_CONST(42)
       >>> fwd()
       Traceback (most recent call last):
         ...
       AssertionError: Stack level mismatch: actual=1 expected=0
   
       >>> from peak.util.assembler import For
       >>> c = Code()
       >>> c(For((), Code.POP_TOP, Pass))
       >>> c.return_()
       >>> dump(c.code())
                       BUILD_TUPLE              0
                       GET_ITER
               L1:     FOR_ITER                L2
                       POP_TOP
                       JUMP_ABSOLUTE           L1
               L2:     LOAD_CONST               0 (None)
                       RETURN_VALUE
   
       >>> c.stack_history
       [0, 1, 1, 1, 1, 2, 2, 2, 1, None, None, 0, 1, 1, 1]
   
   
   Yield value::
   
       >>> import sys
       >>> from peak.util.assembler import CO_GENERATOR
       >>> c = Code()
       >>> c.co_flags & CO_GENERATOR
       0
       >>> c(42, Code.YIELD_VALUE)
       >>> c.stack_size == int(sys.version>='2.5')
       True
       >>> (c.co_flags & CO_GENERATOR) == CO_GENERATOR
       True
   
   
   
 Sequence operators and stack tracking:  Sequence operators and stack tracking:
   
   
Line 607 
Line 2870 
                  24 BUILD_SLICE              3                   24 BUILD_SLICE              3
                  27 BUILD_SLICE              3                   27 BUILD_SLICE              3
   
     XXX Need tests for MAKE_CLOSURE/MAKE_FUNCTION  Stack levels for MAKE_FUNCTION/MAKE_CLOSURE::
   
       >>> c = Code()
       >>> c.MAKE_FUNCTION(0)
       Traceback (most recent call last):
         ...
       AssertionError: Stack underflow
   
 Labels and backpatching forward references::      >>> c.LOAD_CONST(1)
       >>> c.LOAD_CONST(2) # simulate being a function
       >>> c.MAKE_FUNCTION(1)
       >>> c.stack_size
       1
   
     >>> c = Code()      >>> c = Code()
     >>> ref = c.JUMP_ABSOLUTE()      >>> c.MAKE_CLOSURE(0, 0)
     >>> c.LOAD_CONST(1)      Traceback (most recent call last):
     >>> ref()        ...
     >>> c.RETURN_VALUE()      AssertionError: Stack underflow
     >>> dis(c.code())  
       0           0 JUMP_ABSOLUTE            6      >>> c = Code()
                   3 LOAD_CONST               1 (1)      >>> c.LOAD_CONST(1) # closure
             >>    6 RETURN_VALUE      >>> if sys.version>='2.5': c.BUILD_TUPLE(1)
       >>> c.LOAD_CONST(2) # default
       >>> c.LOAD_CONST(3) # simulate being a function
       >>> c.MAKE_CLOSURE(1, 1)
       >>> c.stack_size
       1
   
     >>> c = Code()      >>> c = Code()
     >>> ref = c.JUMP_FORWARD()  
     >>> c.LOAD_CONST(1)      >>> c.LOAD_CONST(1)
     >>> ref()      >>> c.LOAD_CONST(2)
     >>> c.RETURN_VALUE()      >>> if sys.version>='2.5': c.BUILD_TUPLE(2)
     >>> dis(c.code())      >>> c.LOAD_CONST(3) # simulate being a function
       0           0 JUMP_FORWARD             3 (to 6)      >>> c.MAKE_CLOSURE(0, 2)
                   3 LOAD_CONST               1 (1)      >>> c.stack_size
             >>    6 RETURN_VALUE      1
   
   
   
   Labels and backpatching forward references::
   
     >>> c = Code()      >>> c = Code()
     >>> lbl = c.label()      >>> where = c.here()
     >>> c.LOAD_CONST(1)      >>> c.LOAD_CONST(1)
     >>> c.JUMP_IF_TRUE(lbl)      >>> c.JUMP_FORWARD(where)
     Traceback (most recent call last):      Traceback (most recent call last):
       ...        ...
     AssertionError: Relative jumps can't go backwards      AssertionError: Relative jumps can't go backwards
   
     >>> c = Code()  
     >>> lbl = c.label()  
     >>> c.LOAD_CONST(1)  
     >>> ref = c.JUMP_ABSOLUTE(lbl)  
     >>> dis(c.code())  
       0     >>    0 LOAD_CONST               1 (1)  
                   3 JUMP_ABSOLUTE            0  
   
   
 "Call" combinations::  "Call" combinations::
   
Line 703 
Line 2975 
                  15 STORE_FAST               4 (a)                   15 STORE_FAST               4 (a)
                  18 STORE_FAST               5 (b)                   18 STORE_FAST               5 (b)
   
   Constant folding for ``*args`` and ``**kw``::
   
       >>> c = Code()
       >>> c.return_(Call(Const(type), [], [], (1,)))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 (<... 'int'>)
                     3 RETURN_VALUE
   
   
       >>> c = Code()
       >>> c.return_(Call(Const(dict), [], [], [], Const({'x':1})))
       >>> dis(c.code())
         0           0 LOAD_CONST               1 ({'x': 1})
                     3 RETURN_VALUE
   
   Try/Except stack level tracking::
   
       >>> def class_or_type_of(expr):
       ...     return Suite([expr, TryExcept(
       ...         Suite([Getattr(Code.DUP_TOP, '__class__'), Code.ROT_TWO]),
       ...         [(Const(AttributeError), Call(Const(type), (Code.ROT_TWO,)))]
       ...     )])
   
       >>> def type_or_class(x): pass
       >>> c = Code.from_function(type_or_class)
       >>> c.return_(class_or_type_of(Local('x')))
       >>> dump(c.code())
                       LOAD_FAST                0 (x)
                       SETUP_EXCEPT            L1
                       DUP_TOP
                       LOAD_ATTR                0 (__class__)
                       ROT_TWO
                       POP_BLOCK
                       JUMP_FORWARD            L3
               L1:     DUP_TOP
                       LOAD_CONST               1 (<...AttributeError...>)
                       COMPARE_OP              10 (exception match)
                       JUMP_IF_FALSE           L2
                       POP_TOP
                       POP_TOP
                       POP_TOP
                       POP_TOP
                       LOAD_CONST               2 (<... 'type'>)
                       ROT_TWO
                       CALL_FUNCTION            1
                       JUMP_FORWARD            L3
               L2:     POP_TOP
                       END_FINALLY
               L3:     RETURN_VALUE
   
       >>> type_or_class.__code__ = type_or_class.func_code = c.code()
       >>> type_or_class(23)
       <... 'int'>
   
   
   
   
   
   Demo: "Computed Goto"/"Switch Statement"
   ========================================
   
   Finally, to give an example of a creative way to abuse Python bytecode, here
   is an implementation of a simple "switch/case/else" structure::
   
       >>> from peak.util.assembler import LOAD_CONST, POP_BLOCK
   
       >>> import sys
       >>> WHY_CONTINUE = {'2.3':5}.get(sys.version[:3], 32)
   
       >>> def Switch(expr, cases, default=Pass, code=None):
       ...     if code is None:
       ...         return expr, tuple(cases), default
       ...
       ...     d = {}
       ...     else_block  = Label()
       ...     cleanup     = Label()
       ...     end_switch  = Label()
       ...
       ...     code(
       ...         end_switch.SETUP_LOOP,
       ...             Call(Const(d.get), [expr]),
       ...         else_block.JUMP_IF_FALSE,
       ...             WHY_CONTINUE, Code.END_FINALLY
       ...     )
       ...
       ...     cursize = code.stack_size - 1   # adjust for removed WHY_CONTINUE
       ...     for key, value in cases:
       ...         d[const_value(key)] = code.here()
       ...         code.stack_size = cursize
       ...         code(value)
       ...         if code.stack_size is not None: # if the code can fall through,
       ...             code(cleanup.JUMP_FORWARD)  # jump forward to the cleanup
       ...
       ...     code(
       ...         else_block,
       ...             Code.POP_TOP, default,
       ...         cleanup,
       ...             Code.POP_BLOCK,
       ...         end_switch
       ...     )
       >>> Switch = nodetype()(Switch)
   
       >>> c = Code()
       >>> c.co_argcount=1
       >>> c(Switch(Local('x'), [(1,Return(42)),(2,Return("foo"))], Return(27)))
       >>> c.return_()
   
       >>> f = function(c.code(), globals())
       >>> f(1)
       42
       >>> f(2)
       'foo'
       >>> f(3)
       27
   
       >>> dump(c.code())
                       SETUP_LOOP              L2
                       LOAD_CONST               1 (<...method ...get of ...>)
                       LOAD_FAST                0 (x)
                       CALL_FUNCTION            1
                       JUMP_IF_FALSE           L1
                       LOAD_CONST               2 (...)
                       END_FINALLY
                       LOAD_CONST               3 (42)
                       RETURN_VALUE
                       LOAD_CONST               4 ('foo')
                       RETURN_VALUE
               L1:     POP_TOP
                       LOAD_CONST               5 (27)
                       RETURN_VALUE
                       POP_BLOCK
               L2:     LOAD_CONST               0 (None)
                       RETURN_VALUE
   
   
 TODO  TODO
 ====  ====
   
 * Test free/cell ops (LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF)  * Test NAME vs. FAST operators flag checks/sets
 * Test MAKE_FUNCTION/MAKE_CLOSURE  
 * Test code flags generation/cloning  * Test code flags generation/cloning
   
   * Exhaustive tests of all opcodes' stack history effects
   
   * Test wide jumps and wide argument generation in general
   
   * Remove/renumber local variables when a local is converted to free/cell
   


Generate output suitable for use with a patch program
Legend:
Removed from v.2187  
changed lines
  Added in v.2745

cvs-admin@eby-sarna.com

Powered by ViewCVS 1.0-dev

ViewCVS and CVS Help